1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KatRina [158]
3 years ago
15

If f = {(2,5), (3, 2) (4, 6), (5, 1), (2, 2)), then f is a function.

Mathematics
1 answer:
KiRa [710]3 years ago
8 0

Answer:

false

Step-by-step explanation:

f is not a function because you can see that two of the points are (2,5) and (2,2). A function can only have one corresponding y-coordinate for every x-coordinate and since this is not the case here, f is not a function.

You might be interested in
4. Elena va a una fiesta pero no sabe que ponerse, así que lanza un moneda y un dado al
taurus [48]

Answer:

  • <u>1/4</u>

Explanation:

Hola. Puesto que tu pregunta está en español, te responderé en el mismo lenguage.

Estas son las posibilidades dadas por la combinación moneda/dado

                                      Número de combinaciones

Moneda: prenda

    Cara: vestido                 1 de 2:          1/2

     Sello: falda                    1 de 2:          1/2

Dado: color

    Par: negro                      3 de 6:          3/6

    Impar: café                     3 de 6:         3/6

En total son 2 × 6 resultados: 12 (incluye resultados repetidos, no son todos diferentes entre sí)

¿Cuántas combinaciones tienen vestido y color negro?

  • P(Vestido∩negro) = ?

Es decir: moneda = cara y dado = par

  • Son 1 × 3 = 3.

Por tanto, la probabilidad de vestido negro es:

  • 3 de 12 = 3/12 = 1/4 ← respuesta

Hay otras formas de resolverlo. Por ejemplo;

Como los resultados de lanzar la moneda y el dado son independientes:

  • P(Vestido∩negro) = P(Vestido) × P(Negro)
  • P(Vestido) = 1/2
  • P(Negro) = 3/6 = 1/2
  • P(Vestido) × P(Negro) = 1/2 × 1/2 = 1/4 ← mismo resultado
8 0
4 years ago
What is the best estimate for this sum 1/8+1/6=The sum will be close to?
tamaranim1 [39]

The expression given is

\frac{1}{8}+\frac{1}{6}

The sum of the expression will be,

\frac{1}{8}+\frac{1}{6}=\frac{6+8}{48}=\frac{14}{48}=\frac{7}{24}

The sum will be

\frac{7}{24}

8 0
1 year ago
HELP PLS I DONT KNOW THIS ONE
inessss [21]

Answer:

1                  

-------------  

(x+2)(x-4)

Step-by-step explanation:

x+4                    x+3

-------------   * --------------

x^2+5x+6        x^2 -16

Factor

x+4                    x+3

-------------   * --------------

(x+3)(x+2)        (x+4)(x-4)

Cancel like terms

1                  1

-------------   * --------------

(1)(x+2)        (1)(x-4)

1                  

-------------    x cannot equal -3, -4, -2, 4  

(x+2)(x-4)

5 0
3 years ago
Write the algebraic equation for the following: The sum of 4 and another number is 22.
s344n2d4d5 [400]

Answer:

4+x=22

Step-by-step explanation:

Hope this helps

5 0
2 years ago
Read 2 more answers
Consider the region bounded by the curves y=|x^2+x-12|,x=-5,and x=5 and the x-axis
Tasya [4]
Ooh, fun

what I would do is to make it a piecewise function where the absolute value becomse 0

because if you graphed y=x^2+x-12, some part of the garph would be under the line
with y=|x^2+x-12|, that part under the line is flipped up

so we need to find that flipping point which is at y=0
solve x^2+x-12=0
(x-3)(x+4)=0
at x=-4 and x=3 are the flipping points

we have 2 functions, the regular and flipped one
the regular, we will call f(x), it is f(x)=x^2+x-12
the flipped one, we call g(x), it is g(x)=-(x^2+x-12) or -x^2-x+12
so we do the integeral of f(x) from x=5 to x=-4, plus the integral of g(x) from x=-4 to x=3, plus the integral of f(x) from x=3 to x=5


A.
\int\limits^{-5}_{-4} {x^2+x-12} \, dx + \int\limits^{-4}_3 {-x^2-x+12} \, dx + \int\limits^3_5 {x^2+x-12} \, dx

B.
sepearte the integrals
\int\limits^{-5}_{-4} {x^2+x-12} \, dx = [\frac{x^3}{3}+\frac{x^2}{2}-12x]^{-5}_{-4}=(\frac{-125}{3}+\frac{25}{2}+60)-(\frac{64}{3}+8+48)=\frac{23}{6}

next one
\int\limits^{-4}_3 {-x^2-x+12} \, dx=-1[\frac{x^3}{3}+\frac{x^2}{2}-12x]^{-4}_{3}=-1((-64/3)+8+48)-(9+(9/2)-36))=\frac{343}{6}

the last one you can do yourself, it is \frac{50}{3}
the sum is \frac{23}{6}+\frac{343}{6}+\frac{50}{3}=\frac{233}{3}


so the area under the curve is \frac{233}{3}
6 0
3 years ago
Other questions:
  • Solve for w. <br> 1/7 = -3/2w -4/5 Simplify your answer as much as possible.
    8·1 answer
  • PLS HELP I DONT UNDERSTAND :( WILL MARK BRAINLIEST+
    14·2 answers
  • Evaluate the limit, or state that the limit does not exist<br> 4n-6n/10n
    12·1 answer
  • The Coffee Spot has 20 pastries for sale, including 6 glazed donuts.
    6·2 answers
  • ABCD is a rectangle. MBCE = 4x-23 and mDCE = 5+5x.
    5·1 answer
  • Subtract eleven from twice my age x and it is the same as 34.
    9·1 answer
  • You deposit $100 in a savings account. The account earns 11% simple interest per year.
    6·1 answer
  • How can we classify the following shapes ? Please choose correct answers that apply !!!!!!!!!! Will mark Brianliest !!!!!!!!!!!!
    14·1 answer
  • What is (567x237)x(467x939)<br> i will mark brainliest
    11·2 answers
  • Bob Ross bought a Blackberry on the Web for $90.49. He saw the same Blackberry in the mall for $120.21. How much did Bob save by
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!