Answer:
giant impact theory
Explanation:
i don't know im just guessing
A. The angle at which the arrow must be released to hit the bull's-eye is 20.7 °
B. The arrow will go over the branch.
<h3>A. How to determine the angle</h3>
- Range (R) = 74 m
- Initial velocity (u) = 33 m/s
- Acceleration due to gravity (g) = 9.8 m/s²
- Angle (θ) = ?
R = u²Sine(2θ) / g
74 = 33² × Sine (2θ) / 9.8
Cross multiply
74 × 9.8 = 33² × Sine (2θ)
725.2 = 1098 × Sine (2θ)
Divide both sides by 1098
Sine (2θ) = 725.2 / 1098
Sine (2θ) = 0.6605
Take the inverse of sine
2θ = Sine⁻¹ 0.6605
2θ = 41.3
Divide both sides by 2
θ = 41.3 / 2
θ = 20.7 °
<h3>B. How to determine if the arrow will go over or under the branch</h3>
To determine if the arrow will go over or under the branch situated mid way, we shall determine the maximum height attained by the arrow. This can be obtained as follow:
- Initial velocity (u) = 33 m/s
- Acceleration due to gravity (g) = 9.8 m/s²
- Angle (θ) = 20.7 °
- Maximum height (H) = ?
H = u²Sine²θ / 2g
H = [33² × (Sine 20.7)²] / (2 ×9.8)
H = 6.94 m
Thus, the maximum height attained by the arrow is 6.94 m which is greater than the height of the branch (i.e 3.50 m).
Therefore, we can conclude that the arrow will go over the branch
Learn more about projectile motion:
brainly.com/question/20326485
#SPJ1
First:
d = 100 m
t = 200 sec
v = 100/200 = 0.5 m/s
Displacement is zero since he returned to his start point.
t2 = d/v2 = 100/2 = 50 sec
total time = 50 + 200 + 500 = 750 sec
Answer:
a) v = 21.34 m/s
b) v = 21.34 m/s
c) v = 21.34 m/s
Explanation:
Mass of the snowball, m = 0.560 kg
Height of the cliff, h = 14.2 m
Initial velocity of the ball, u = 13.3 m/s
θ = 26°
The speed of the slow ball as it reaches the ground, v = ?
The initial Kinetic energy of the snow ball, 
Potential energy of the snow ball at the given height, PE = mgh
Final Kinetic energy of the ball as it reaches the ground, 
a) Using the principle of energy conservation,

b) The speed remains v = 21.34 m/s since it is not a function of the angle of launch
c)The principle of energy conservation used cancels out the mass of the object, therefore the speed is not dependent on mass
v = 21. 34 m/s