Distance and time, distance because that's how far and time because that's how long
Answer:
Option (e)
Explanation:
If a mass attached to a spring is stretched and released, it follows a simple harmonic motion.
In simple harmonic motion, velocity of the mass will be maximum, kinetic energy is maximum and acceleration is 0 at equilibrium position (at 0 position).
At position +A, mass will have the minimum kinetic energy, zero velocity and maximum acceleration.
Therefore, Option (e) will be the answer.
C is correct. The work-force relation is given by W=F·d, where F is force vector, and d is the displacement vector. The dot is the dot product, which is a measure of how parallel the two vectors are. It can be restated as the product of two vector magnitudes times the cosine of the angle between them. Therefore work is a scalar, not a vector, since the dot product returns a scalar.
You're fishing for "polarization".
Answer:
For a body moving at a uniform velocity you can calculate the speed by dividing the distance traveled by the amount of time it took, for example one mile in 1/2 hour would give you 2 miles per hour. If the velocity is non-uniform all you can say is what the average speed is.