Answer:
The magnitude of F₁ is 3.7 times of F₂
Explanation:
Given that,
Time = 10 sec
Speed = 3.0 km/h
Speed of second tugboat = 11 km/h
We need to calculate the speed


The force F₁is constant acceleration is also a constant.

We need to calculate the acceleration
Using formula of acceleration



Similarly,

For total force,


The speed of second tugboat is


We need to calculate total acceleration



We need to calculate the acceleration a₂



We need to calculate the factor of F₁ and F₂
Dividing force F₁ by F₂



Hence, The magnitude of F₁ is 3.7 times of F₂
In several of the questions you've posted during the past day, we've already said that a wave with larger amplitude carries more energy. That idea is easy to apply to this question.
The only thing that definitely happens in every such case is:
The container becomes heavier.
Answer:
The arrow is at a height of 500 feet at time t = 2.35 seconds.
Explanation:
It is given that,
An arrow is shot vertically upward at a rate of 250 ft/s, v₀ = 250 ft/s
The projectile formula is given by :

We need to find the time(s), in seconds, the arrow is at a height of 500 ft. So,

On solving the above quadratic equation, we get the value of t as, t = 2.35 seconds
So, the arrow is at a height of 500 feet at time t = 2.35 seconds. Hence, this is the required solution.
Its very simple if a body is moving in circle the magnitude of its velocity remain constant but its direction changes because velocity is directed towards tangent and at every point in a cirlce its direction will be different (along tangent) so velocity is not uniform .As acceleration is the rate change of velocity so it will be non zero because velocity is changing due to its direction.