Answer:
a.
b. 
Explanation:
<u>Given:</u>
- Velocity of the particle, v(t) = 3 cos(mt) = 3 cos (0.5t) .
<h2>
(a):</h2>
The acceleration of the particle at a time is defined as the rate of change of velocity of the particle at that time.

At time t = 3 seconds,

<u>Note</u>:<em> The arguments of the sine is calculated in unit of radian and not in degree.</em>
<h2>
(b):</h2>
The velocity of the particle at some is defined as the rate of change of the position of the particle.

For the time interval of 2 seconds,

The term of the left is the displacement of the particle in time interval of 2 seconds, therefore,

It is the displacement of the particle in 2 seconds.
The correct answer is:
<span>B.) At terminal velocity there is no net force
In fact, when the parachutist reaches the terminal velocity, his velocity does not change any more. It means that the acceleration acting on the parachutist is zero, and for Newton's second law, this means the net force acting on him is zero:
</span>

<span>because the acceleration is zero: a=0.
This also means that the two relevant forces acting on the parachutist (gravity, downward, and air resistance, upward) are balanced to produce a net force equal to zero.</span>
The mass on the spring is 0.86 kg
Explanation:
The period of a mass-spring system is given by the equation

where
m is the mass
k is the spring constant
In this problem, we have:
k = 88.7 N/m is the spring constant
The system makes 15 oscillations in 9.24 s: therefore, the period of the system is

Now we can re-arrange the first equation to solve for the mass:

Learn more about period:
brainly.com/question/5438962
#LearnwithBrainly
Each
ion contains three extra protons. Hence, the extra charge on each
=
C
Total charge = 0.035 pC
Total charge (Q) =
C
Let the number of
ions be n.
According to question:



n = 72917
Hence, the total number of ions needed to be transferred is 72917
A is the answer for the problem