<span>Find the wind speed and the plane's airspeed.
:
Let s = speed of the plane in still air
Let w = speed of the wind
then
(s-w) = plane speed against the wind
and
(s+w) = plane speed with the wind
:
Change 3 3/8 hrs to 3.375 hrs
:
The trips there and back are equal distance, (1890 mi) write two distance equations
dist = time * speed
:
3.375(s-w) = 1890
3.0(s + w) = 1890
:
It is convenient that we can simplify both these equations:
divide the 1st by 3.375
divide the 2nd by 3
resulting in two simple equations that can be used for elimination of w
s - w = 560
s + w = 630
----------------adding eliminates w, find s
2s = 1190
s =
s = 595 mph is the plane speed in still air
Find w
595 + w = 630
w = 630 - 595
w = 35 mph is the wind spee</span>
Its is d the answer is d idk why this thing makes type more then what i need tro type
Answer:
Neither parallel nor perpendicular
Step-by-step explanation:
I'm assuming you meant line k is y = 3x -2. If not, this is wrong.
For this, you need to put both lines in point-slope form, or the form that line k is already in. This means you only need to convert line m.
-2r + 6v = 18
6v = 2r + 18
v = 2/6r + 18/6
v = 1/3r + 3
Now you can answer the question.
To be parallel, lines must have the same slope (but a different y-intercept). 3 and 1/3 are not the same, so the lines are not parallel.
To be perpendicular, one line must have the opposite reciprocal (fraction flipped and + goes to - or - to +) of the other. While 3 is the reciprocal of 1/3, they are both positive, so they are not perpendicular.
To be the same line, the equations must be absolutely identical, which they aren't.
This leaves the last option: neither.
Let me know if you need a more in-depth explanation of anything here! I'm happy to help!
i think this is a systems of equations
putting this on a graph we have to equations:
y = 10x + 30
y = 20x
graph and find the intersection.
it has to be more than or equal to 3 miles i think for wreckomend
Answer: $2203.74
Step-by-step explanation: