Convection keeps the earths surface warm
I would take my beast guess false. I hope
Answer:
25% or 1/4
Explanation:
The gene for colour in Heliodors is controlled by two contrasting alleles that codes for Red (R) and Yellow (Y) colours. However, these two alleles exhibit incomplete dominance, which is a phenomenon whereby a combination of both alleles gives rise to a third intermediate phenotype that is a blending of the other two parental phenotypes. In this case, both colours gives rise to a heterozygous Orange coloration (RY) in Heliodors.
However, if two orange Heliodors (RY) are crossed, four possible offsprings will be produced with the genotypes: RR, RY, RY, YY. This shows a phenotypic ratio of 1 red: 2orange: 1yellow. Hence, the probability of having a child with red coloration is 1 out of 4 possible offsprings i.e. 1/4.
Expressing this in percentage, we have 1/4 × 100 = 25%.
Highly vascularized due to blood needing oxygen and needing to release carbon dioxide. They take place between alveoli and capillaries.
The five proteins of the myofilaments are the following:
<span>1.
</span>Myosin, shaped like a golf club, with two
polypeptides intertwined to form a shaftlike tail and a double globular head,
or cross-bridge, projecting from it at an angle.
<span>2. </span>Fibrous actin is like a bead necklace—a string
of subunits called globular (G) actin. Each G actin has an active site that can
bind to the head of a myosin molecule.
<span>3. </span>Tropomyosin. It blocks the active sites of six
or seven G actins and prevents myosin cross-bridges from binding to them when a
muscle fiber is relaxed.
<span>4. </span>Troponin a smaller calcium-binding protein bound
to each tropomyosin molecule.
<span>5. </span>Titin (connectin), run through the core of a
thick filament, emerge from the end of it, and connect it to a structure called
the Z disc.