7.91 g/ml is the density of the iron piece of 28.5 gms.
Explanation:
The density of a substance is defined as the volume it occupies. It tells the matter present in a substance.
The density is mass per unit volume and is denoted by p.
The formula for density is given by:
density (p) = 
Data given is :
mass= 28.5 grams
V1 = 45.5 ml
V2= 49.1 ml
The initial volume of water was 45.5 ml, when iron piece of 28.5 grams was added the final volume was 49.1 ml.
Putting the values in the equation of density
p = 
p = 7.91 g/ml
Since iron is a dense material it will occupy less volume
Explanation:
Equation of reaction:
CO + 2H₂ ⇒ CH₃OH + energy
a. An increase in pressure:
A change in pressure affects only equilibrium involving a gas or gases. Le Chatelier's principle can be used to predict the direction of displacement.
An increase in pressure on an equilibrium system will shift the position of equilibrium to the side having smaller volume and vice-versa
CO + 2H₂ ⇒ CH₃OH + energy
3 moles 1 moles
An increase in pressure will favor the forward reaction to be favored.
b. Addition of H₂:
An in concentration of a specie favors the direction that uses up that specie and lowers its concentration.
Addition of hydrogen gas increases the concentration of amount of substances reacting.
To annul the effect of the reactant, more the product is given. The equilibrium shifts in the forward direction.
learn more:
equilibrium brainly.com/question/5877801
#learnwithBrainly
Answer:
A cation has more protons than electrons, consequently giving it a net positive charge. For a cation to form, one or more electrons must be lost, typically pulled away by atoms with a stronger affinity for them.
Were i found my answer: Cation vs Anion: Definition, Chart and the Periodic Table
Explanation:
<span>The high-energy electron travels down an electron transport chain, losing energy as it goes.
Some of the released energy drives pumping of </span><span><span>\text H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions from the stroma into the thylakoid interior, building a gradient.
</span><span><span>H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions from the splitting of water also add to the gradient.
</span><span><span> H^+<span>H<span><span>+</span><span></span></span></span></span>H, start superscript, plus, end superscript</span><span> ions flow down their gradient and into the stroma, they pass through ATP synthase, driving ATP production in a process known as </span>chemiosmosis<span>.</span>
The building blocks of protein are amino acids.
Amino acids are a class of organic compounds that contain at least one amino group, -NH2, and carboxyl group, -COOH.
Alpha amino acids , RCH(NH2)COOH, are the building blocks from which proteins are constructed.
The NH group of one amino acid and the COOH group of the other amino acid are joined together and a peptide bond -CONH- is formed between the two amino acids and the product is called a dipeptide.