No, it is very unlikely for that to happen.
Answer:
A.) ![K_b = \frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BCH_3NH_3%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BCH_3NH_2%5D%7D)
Explanation:
The general Kb expression is:
![K_b = \frac{[HA][OH^-]}{[A^-]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BHA%5D%5BOH%5E-%5D%7D%7B%5BA%5E-%5D%7D)
In this equation
-----> Kb = equilibrium constant
-----> [HA] = acid
-----> [A⁻] = base
Since liquids are not included in equilibrium expressions, H₂O should not be present. The products are in the numerator while the reactant are in the denominator. In this reaction, CH₃NH₂ is acting as a base and CH₃NH₃⁺ is acting as an acid.
As such, the expression is:
![K_b = \frac{[CH_3NH_3^+][OH^-]}{[CH_3NH_2]}](https://tex.z-dn.net/?f=K_b%20%3D%20%5Cfrac%7B%5BCH_3NH_3%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BCH_3NH_2%5D%7D)
Answer:
These two numbers are fixed for an element. The mass number tells us the number the sum of nucleons of protons and neutrons in the nucleus of an atom. The atomic number also known as the proton number is the number of protons found in the nucleus of an atom. ... The atomic number uniquely identifies a chemical element.
Explanation:
Answer:
There would be three Lithium atoms per one Nitrogen atom.
3:1
Li3N (Lithium Nitride)
Explanation:
Group 15 elements usually have 5 valence electrons, and every atom wants to have a full valence shell of valence electrons. So, nitrogen can get three electrons from each Lithium atom in order to get a full octet.
hydrogen is not balanced
the right balanced equation is
Fe2O3 + 3 H2 -> 2Fe + 3H2O