The solution for X= 0 and for y= 4x+11
Answer:
Any line with the slope of -2 and a y intercept other than 10 will be parallel to this line.
Step-by-step explanation:
Parallel lines have the same slopes but different y y-intercepts
Answer:
20jsbdbdhsnebbjiw jwjwbsnsnenskssmwme jejwinsjeiidd
Answer:
![4ln [\frac{x^2 (x^3-1)}{x-5}]](https://tex.z-dn.net/?f=%204ln%20%5B%5Cfrac%7Bx%5E2%20%28x%5E3-1%29%7D%7Bx-5%7D%5D)
Step-by-step explanation:
For this case we have the following expression:
![4[ln(x^3-1) +2ln(x) -ln(x-5)]](https://tex.z-dn.net/?f=%204%5Bln%28x%5E3-1%29%20%2B2ln%28x%29%20-ln%28x-5%29%5D)
For this case we can apply the following property:

And we can rewrite the following expression like this:

And we can rewrite like this our expression:
![4[ln(x^3-1) +ln(x^2) -ln(x-5)]](https://tex.z-dn.net/?f=%204%5Bln%28x%5E3-1%29%20%2Bln%28x%5E2%29%20-ln%28x-5%29%5D)
Now we can use the following property:

And we got this:
![4[ln(x^3-1)(x^2) -ln(x-5)]](https://tex.z-dn.net/?f=%204%5Bln%28x%5E3-1%29%28x%5E2%29%20-ln%28x-5%29%5D)
And now we can apply the following property:

And we got this:
![4ln [\frac{x^2 (x^3-1)}{x-5}]](https://tex.z-dn.net/?f=%204ln%20%5B%5Cfrac%7Bx%5E2%20%28x%5E3-1%29%7D%7Bx-5%7D%5D)
And that would be our final answer on this case.
The questions seems to be lacking some information. By rate I'm going to assume position and in that scenario the answer would be B because the position function is modeled by a linear function.