Answer:
Water
Explanation:
Molecular oxygen is the terminal electron acceptor and serves to receive electrons from reduced NADH and FADH2 to reoxidize them. NADH and FADH2 are formed during glycolysis and Kreb's cycle. These reducing powers should be re-oxidized to enter in the first two steps of aerobic respiration again.
For the purpose, NADH, and FADH2 transfer their electrons to the molecular oxygen via electron transport chain. After accepting the electrons, molecular oxygen is oxidized into the water molecule. Therefore, radioactive oxygen isotope would appear in the form of a water molecule after completion of cellular respiration.
Answer: The most affected would be organs that have QUICKLY dividing cells (like the intestine and hair follicles).
Explanation:
Cancer cells are cells that divides uncontrollably giving rise to a mass of tissue called tumour. They grow faster than a normal cell in an uncoordinated manner, and continues to grow after the initial stimulus has ceased.
Paclitaxel is a drug that is approved for the treatment of cancer affecting different parts of the body. It's a microtubule-stabilizing drug whose mechanism of action is to induce mitotic arrest in the cancer cells.
Paclitaxel in its cause of action not only affect cancer cells but normal cells as well. To justify this statement, as stated earlier, the mechanism of action of paclitaxel is to induce mitotic arrest. Therefore the cells of organs where rapid mitosis occurs would be most affected. Skin cells, hair follicles and the cells lining our intestines (epithelial cells) all have high rates of mitosis as these tissues constantly need to be replaced.
Answer:
Explanation:
Inbreeding results which can increase the chances of offspring being affected by deleterious or recessive traits. This usually leads to at least temporarily decreased biological fitness of a population (called inbreeding depression), which is its ability to survive and reproduce.
Answer: C. building cars that can better withstand collisions