To solve this problem, we should recall that
the change in enthalpy is calculated by subtracting the total enthalpy of the reactants
from the total enthalpy of the products:
ΔH = Total H of products – Total H of reactants
You did not insert the table in this problem, therefore I
will find other sources to find for the enthalpies of each compound.
ΔHf CO2 (g) = -393.5 kJ/mol
ΔHf CO (g) = -110.5 kJ/mol
ΔHf Fe2O3 (s) = -822.1 kJ/mol
ΔHf Fe(s) = 0.0 kJ/mol
Since the given enthalpies are still in kJ/mol, we have to
multiply that with the number of moles in the formula. Therefore solving for ΔH:
ΔH = [<span>3 mol </span><span>( − </span><span>393.5 </span>kJ/mol<span>) + 1 mol (</span>0.0
kJ/mol)<span>] − [</span><span>3 mol </span><span>( − </span><span>110.5 </span>kJ/mol<span>) + </span><span>2 mol </span><span>( − </span><span>822.1 </span>kJ/mol<span>)]</span>
ΔH = <span>795.2
kJ</span>
Answer:
False
Explanation:
Diffusion uses the concentration gradient that has been set up, this is a naturally occurring phenomena, and using a diffusion gradient some small particles can cross over the cell membrane. Some bigger or polar molecules require facilitated diffusion to move these molecules across the membrane.
Facilitated diffusion still uses the gradient for passive transport. This means that ATP is not used to transport molecules.
The reason that glucose will not move into the cell via passive transport is because there is a higher concentration of glucose inside the cell, meaning it needs active transport to move glucose (against the concentration gradient) into the cell.
Answer:
Cells are extremely small.
Explanation:
As Mendel describes in this story, cells are so small they cannot normally be seen with the naked eye. ... The total organism remains the same throughout this process, and (usually) has a longer time on earth than any one of its cells.
Answer:
They are heavy metals.
Explanation:
Heavy metals are generally defined as metals with relatively high densities, atomic weights, or atomic numbers.
Answer:
The humid continental climate has hot summers, while the subarctic climate has short, cool summers.
Explanation:
I did the lesson already and got it correct lol