<u>Given:</u>
Mass of pure iron (Fe) = 3.4 g
<u>To determine:</u>
Mass of HBr needed to dissolve the above iron
<u>Explanation:</u>
Reaction between HBr and Fe is
Fe + 2HBr → FeBr₂ + H₂
Based on the reaction stoichiometry-
1 mole of Fe reacts with 2 moles of HBr
# moles of Fe = mass of Fe/atomic mass of Fe = 3.4/56 g.mol⁻¹ = 0.0607 moles
Therefore # moles of HBr = 2*0.0607 = 0.1214 moles
Molar mass of HBr = 81 g/mole
Mass of HBr = 0.1214 moles * 81 g/mole = 9.83 g
Ans: Mass of HBR required is 9.83 g
Answer:
WAIT
good luck on whatever this is for my dude.
Answer:
Mass of proton neutron and electron
Protons, neutrons, and electrons: Both protons and neutrons have a mass of 1 amu and are found in the nucleus. However, protons have a charge of +1, and neutrons are uncharged. Electrons have a mass of approximately 0 amu, orbit the nucleus, and have a charge of -1.
Explanation:
Hope this helps :)
Answer:
0.981atm
Explanation:
According ot Dalton's law total pressure of a mixture of non-reactive gas is equal to sum of partial pressures of individual gases.
total pressure= 1.01at
Number of gases=2
Gases: water vapor and hydrogen
partial pressure of water vapor= 0.029atm
1.01= partial pressure of water vapor+ partial pressure of hydrogen
1.01= 0.029 + partial pressure of hydrogen
partial pressure of hydrogen = 0.981atm
Answer:

Explanation:
Hello there!
In this case, according to the given chemical reaction for this problem about stoichiometry:

Whereas there is a 3:2 mole ratio of oxygen (molar mass = 32.0 g/mol) to iron (III) oxide (molar mass = 159.69 g/mol) and therefore, the correct stoichiometric setup is:

Regards!