Answer:
D. The equipment needed to accommodate the high temperature and pressure will be expensive to produce.
Explanation:
Hello!
In this case, for the considered reaction, it is clear it is an exothermic reaction because it produces energy; and therefore, the higher the temperature the more reactants are yielded as the reverse reaction is favored. Moreover, since the effect of pressure is verified as favoring the side with fewer moles; in this case the products side (2 moles of ammonia).
In such a way, the high pressure favors the formation of ammonia whereas the high temperature the formation of hydrogen and nitrogen and therefore, option A is ruled out. Since the high pressure shifts the reaction rightwards and the high temperature leftwards, we would not be able to know whether the reaction has ended or not because it will be a "go and come back" process, that is why B is also discarded. Now, since hydrogen and nitrogen would be the "wastes", we discard C because they are not toxic. That is why the most accurate answer would be D. because it is actually true that such equipment is quite expensive.
Best regards!
Answer is: standard metal cations are sodium cation (Na⁺), potassium cation (K⁺), magnesium cation (Mg²⁺) and calcium cation (Ca²⁺).
Soap<span> is a </span>salt<span> of a </span>fatty acid. When soap have sodium and potassim cations, that is toilet soap and when soap have magnesium and calcium cations, that soap is called <span>metallic soap.</span>
The equilibrium constant k is actually the ratio of the
concentration of the products over the concentration of reactants at equilibrium. So if the
concentration of products < concentration of reactants, therefore the
constant k will be small. But if the concentration of products >
concentration of reactants, the constant k will be large. In this case the
value is too small (x10^-19), therefore we can say that the reaction favors the
reactant side:
the equilibrium lies far to the left
<span>Answer:
2 C8H18 + 25 O2 => 16 CO2 + 18 H2O
1.0 kg = 1000 g C8H18 = 1000 g / 114.2293 g/mole = 8.75 moles C8H18
8.75 moles C8H18 produce (16/2) (8.75) = 70 moles CO2
70 moles CO2 = (70 moles) (44.0096 g/mole) = 3081 g CO2 = 3.1 kg CO2</span>
The answer is C. A, B, and C would depend on what type of electron it is.