1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murljashka [212]
3 years ago
14

Find the solution set of the following quadratic equations using the quadratic formula.

Mathematics
1 answer:
oksian1 [2.3K]3 years ago
7 0

Answer:

<h3>                1)  x_1=\dfrac{7+\sqrt{13}}2\,,\quad x_2=\dfrac{7-\sqrt{13}}2</h3><h3>                2)   x_1=-\dfrac13\,,\quad x_2=-3    </h3>

Step-by-step explanation:

<h3>1)</h3>

x^2 - 7x + 9 = 0\quad\implies\quad a=1\,,\ b = -7\,,\ c=9\\\\x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}=\dfrac{-(-7)\pm\sqrt{(-7)^2-4\cdot1\cdot9}}{2\cdot1}=\dfrac{7\pm\sqrt{49-36}}2\\\\x_1=\dfrac{7+\sqrt{13}}2\,,\quad x_2=\dfrac{7-\sqrt{13}}2

<h3>2)</h3><h3>3x^2 + 10x=-3\\\\3x^2+10x+3=0\quad\implies\quad a=3\,,\ b =10\,,\ c=3\\\\x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}=\dfrac{-10\pm\sqrt{10^2-4\cdot3\cdot3}}{2\cdot3}= \dfrac{-10\pm\sqrt{100-36}}6\\\\x_1=\dfrac{-10+\sqrt{64}}6=\dfrac{-10+8}6=-\dfrac13\,,\qquad x_2=\dfrac{-10-8}6=-3</h3>
You might be interested in
Look at image. reflection across the x-axis​
REY [17]

Answer:

H stays G  -2,-4    F -5,-3  are the new points

Step-by-step explanation:

3 0
3 years ago
Solve irrational equation pls
rusak2 [61]
\hbox{Domain:}\\&#10;x^2+x-2\geq0 \wedge x^2-4x+3\geq0 \wedge x^2-1\geq0\\&#10;x^2-x+2x-2\geq0 \wedge x^2-x-3x+3\geq0 \wedge x^2\geq1\\&#10;x(x-1)+2(x-1)\geq 0 \wedge x(x-1)-3(x-1)\geq0 \wedge (x\geq 1 \vee x\leq-1)\\&#10;(x+2)(x-1)\geq0 \wedge (x-3)(x-1)\geq0\wedge x\in(-\infty,-1\rangle\cup\langle1,\infty)\\&#10;x\in(-\infty,-2\rangle\cup\langle1,\infty) \wedge x\in(-\infty,1\rangle \cup\langle3,\infty) \wedge x\in(-\infty,-1\rangle\cup\langle1,\infty)\\&#10;x\in(-\infty,-2\rangle\cup\langle3,\infty)


&#10;\sqrt{x^2+x-2}+\sqrt{x^2-4x+3}=\sqrt{x^2-1}\\&#10;x^2-1=x^2+x-2+2\sqrt{(x^2+x-2)(x^2-4x+3)}+x^2-4x+3\\&#10;2\sqrt{(x^2+x-2)(x^2-4x+3)}=-x^2+3x-2\\&#10;\sqrt{(x^2+x-2)(x^2-4x+3)}=\dfrac{-x^2+3x-2}{2}\\&#10;(x^2+x-2)(x^2-4x+3)=\left(\dfrac{-x^2+3x-2}{2}\right)^2\\&#10;(x+2)(x-1)(x-3)(x-1)=\left(\dfrac{-x^2+x+2x-2}{2}\right)^2\\&#10;(x+2)(x-3)(x-1)^2=\left(\dfrac{-x(x-1)+2(x-1)}{2}\right)^2\\&#10;(x+2)(x-3)(x-1)^2=\left(\dfrac{-(x-2)(x-1)}{2}\right)^2\\&#10;(x+2)(x-3)(x-1)^2=\dfrac{(x-2)^2(x-1)^2}{4}\\&#10;4(x+2)(x-3)(x-1)^2=(x-2)^2(x-1)^2\\
&#10;4(x+2)(x-3)(x-1)^2-(x-2)^2(x-1)^2=0\\&#10;(x-1)^2(4(x+2)(x-3)-(x-2)^2)=0\\&#10;(x-1)^2(4(x^2-3x+2x-6)-(x^2-4x+4))=0\\&#10;(x-1)^2(4x^2-4x-24-x^2+4x-4)=0\\&#10;(x-1)^2(3x^2-28)=0\\&#10;x-1=0 \vee 3x^2-28=0\\&#10;x=1 \vee 3x^2=28\\&#10;x=1 \vee x^2=\dfrac{28}{3}\\&#10;x=1 \vee x=\sqrt{\dfrac{28}{3}} \vee x=-\sqrt{\dfrac{28}{3}}\\

There's one more condition I forgot about
-(x-2)(x-1)\geq0\\&#10;x\in\langle1,2\rangle\\

Finally
x\in(-\infty,-2\rangle\cup\langle3,\infty) \wedge x\in\langle1,2\rangle \wedge x=\{1,\sqrt{\dfrac{28}{3}}, -\sqrt{\dfrac{28}{3}}\}\\&#10;\boxed{\boxed{x=1}}
3 0
3 years ago
What are the properties of the incenter of a triangle
Anit [1.1K]
<span>Located at intersection of the angle bisectors. See Triangle incenter definition</span>
5 0
3 years ago
What is the square root of 16 X ^36
gayaneshka [121]
2/3 decimal form is 0.6+
6 0
3 years ago
Read 2 more answers
Please help ASAP it’s due in 4 minutes
maxonik [38]

Answer:

a) well we know the hypotenuse and we know that all sides are 90 degrees, and that its an even square, so if we split it into a triangle , we know that the other 2 angles are 45 degrees total, with this we can calculate  the other 2 sides, which round to 10 inches.

b) if we know the sides of the first side, knowing the fact that its a square we know that all sides are even, therefore, all sides are 10 inches, the formula the finding the perimeter is basic:

P=L(2) + W(2)

L being length, W being width and P being perimeter

so we add up all 4 sides, here is the equation:

10 + 10 + 10 + 10 = 10 x 4 = 40

With this, we know that the perimeter is 40 inches total

c) knowing how long the sides are, we can figure out the area through another basic formula:

A=L X W

With A meaning Area

since its a square, we know all the sides are even, so the width and length are both 10...

10 X 10 = 100

Step-by-step explanation:

I Hope I Helped!

3 0
3 years ago
Other questions:
  • Ms. Fuentes's dass of 22 scholars is going to the Museum of Natural History. Each scholar has to pay for
    13·1 answer
  • A list of numbers in a specific order
    12·1 answer
  • James estimated the total cost of groceries to be $50. The actual cost is$65. What is the percent error. Round to nearest whole
    15·1 answer
  • Given P(E or F) = 0.16, P(E) = 0.12, and P(F) = 0.17, what is P(E and F)?
    12·1 answer
  • Questions 6 to 10 are related. based on a random sample of n=15 observations, we have obtained a sample mean of x(bar)=1050. the
    9·1 answer
  • The table show the relationship of how many pounds of cherries are needed to make a certain number of pies: pies 6 12 18 cherrie
    14·1 answer
  • Help me plzz thank you and u don't need to solve it all the way I just need the answer
    10·2 answers
  • The mass of one methane molecule is 2.7x10^-23gram. Find the mass of 90,000 molecules of methane. Express the answer in scientif
    6·1 answer
  • What is the value of "a"?<br> ill give brainliest to whoever answers this question correctly
    6·2 answers
  • HELP RIGHTTT AWAYYYYY PLSSSSSS
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!