Answer:
![BC=4\sqrt{5}\ units](https://tex.z-dn.net/?f=BC%3D4%5Csqrt%7B5%7D%5C%20units)
Step-by-step explanation:
see the attached figure with letters to better understand the problem
step 1
In the right triangle ACD
Find the length side AC
Applying the Pythagorean Theorem
![AC^2=AD^2+DC^2](https://tex.z-dn.net/?f=AC%5E2%3DAD%5E2%2BDC%5E2)
substitute the given values
![AC^2=16^2+8^2](https://tex.z-dn.net/?f=AC%5E2%3D16%5E2%2B8%5E2)
![AC^2=320](https://tex.z-dn.net/?f=AC%5E2%3D320)
![AC=\sqrt{320}\ units](https://tex.z-dn.net/?f=AC%3D%5Csqrt%7B320%7D%5C%20units)
simplify
![AC=8\sqrt{5}\ units](https://tex.z-dn.net/?f=AC%3D8%5Csqrt%7B5%7D%5C%20units)
step 2
In the right triangle ACD
Find the cosine of angle CAD
![cos(\angle CAD)=\frac{AD}{AC}](https://tex.z-dn.net/?f=cos%28%5Cangle%20CAD%29%3D%5Cfrac%7BAD%7D%7BAC%7D)
substitute the given values
![cos(\angle CAD)=\frac{16}{8\sqrt{5}}](https://tex.z-dn.net/?f=cos%28%5Cangle%20CAD%29%3D%5Cfrac%7B16%7D%7B8%5Csqrt%7B5%7D%7D)
----> equation A
step 3
In the right triangle ABC
Find the cosine of angle BAC
![cos(\angle BAC)=\frac{AC}{AB}](https://tex.z-dn.net/?f=cos%28%5Cangle%20BAC%29%3D%5Cfrac%7BAC%7D%7BAB%7D)
substitute the given values
----> equation B
step 4
Find the value of x
In this problem
----> is the same angle
so
equate equation A and equation B
solve for x
Multiply in cross
![(8\sqrt{5})(\sqrt{5})=(16+x)(2)\\\\40=32+2x\\\\2x=40-32\\\\2x=8\\\\x=4\ units](https://tex.z-dn.net/?f=%288%5Csqrt%7B5%7D%29%28%5Csqrt%7B5%7D%29%3D%2816%2Bx%29%282%29%5C%5C%5C%5C40%3D32%2B2x%5C%5C%5C%5C2x%3D40-32%5C%5C%5C%5C2x%3D8%5C%5C%5C%5Cx%3D4%5C%20units)
![DB=4\ units](https://tex.z-dn.net/?f=DB%3D4%5C%20units)
step 5
Find the length of BC
In the right triangle BCD
Applying the Pythagorean Theorem
![BC^2=DC^2+DB^2](https://tex.z-dn.net/?f=BC%5E2%3DDC%5E2%2BDB%5E2)
substitute the given values
![BC^2=8^2+4^2](https://tex.z-dn.net/?f=BC%5E2%3D8%5E2%2B4%5E2)
![BC^2=80](https://tex.z-dn.net/?f=BC%5E2%3D80)
![BC=\sqrt{80}\ units](https://tex.z-dn.net/?f=BC%3D%5Csqrt%7B80%7D%5C%20units)
simplify
![BC=4\sqrt{5}\ units](https://tex.z-dn.net/?f=BC%3D4%5Csqrt%7B5%7D%5C%20units)