The distance from the center to where the foci are located exists 8 units.
<h3>How to determine the distance from the center?</h3>
The formula associated with the focus of an ellipse exists given as;
c² = a² − b²
Where c exists the distance from the focus to the center.
a exists the distance from the center to a vertex,
the major axis exists 10 units.
b exists the distance from the center to a co-vertex, the minor axis exists 6 units
c² = a² − b²
c² = 10² - 6²
c² = 100 - 36
c² = 64

c = 8
Therefore, the distance from the center to where the foci are located exists 8 units.
To learn more about the Pythagorean theorem here:
brainly.com/question/654982
#SPJ4
Answer:
B I am 100% sure
Step-by-step explanation:
Answer:
(3m-4/5)2
Final result :
(15m - 4)2
——————————
52
Step by step solution :
Step 1 :
4
Simplify —
5
Equation at the end of step 1 :
4
(3m - —)2
5
Step 2 :
Rewriting the whole as an Equivalent Fraction :
2.1 Subtracting a fraction from a whole
Rewrite the whole as a fraction using 5 as the denominator :
3m 3m • 5
3m = —— = ——————
1 5
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Adding fractions that have a common denominator :
2.2 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
3m • 5 - (4) 15m - 4
———————————— = ———————
5 5
Equation at the end of step 2 :
(15m - 4)
(—————————)2
5
Step 3 :
Final result :
(15m - 4)2
———
52
Step-by-step explanation:
Answer:
16 meters
Step-by-step explanation:
sana makatulong