1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler79 [48]
3 years ago
13

The following are the Earth–Sun distance at the equinoxes and solstices: March equinox 149.0 million km June solstice 152.0 mill

ion km September equinox 150.2 million km December solstice 147.2 million km During _____ the Earth is closest to the Sun and during _____ the Earth is farthest from the Sun.
Physics
1 answer:
Mice21 [21]3 years ago
5 0

Answer:

During <u>winter (late December/early January)</u> the Earth is closest to the Sun and during <u>summer (late June/early July)</u> the Earth is farthest from the Sun.

Explanation:

In the northern hemisphere, the earth usually comes closer to the sun during the time of winter season, mostly in late December or early January.

On the other hand, the earth is farthest from the sun during the time of summer season, mostly in late June or early July.

When the earth is closer to the sun, during the winter, it is comparatively cold. It is due to the absorption of a lesser amount of incoming solar radiation. The tilt of the earth is also responsible for this low temperature.

But, when the earth is farthest from the sun, during the summer, it is comparatively hot. It is due to the absorption of a large amount of incoming solar radiation.

You might be interested in
A bus slows with constant acceleration from 24.0 m/s to 16.0 m/s and moves 50.0 m in the process. (a) How much further does it t
navik [9.2K]

Answer:

(a) Bus will traveled further a distance of 40 m

(b) It will take 7.5 sec to stop the bus

Explanation:

We have given initial velocity of the bus u = 24 m/sec

And final velocity v = 16 m/sec

Distance traveled in this process s = 50 m

From third equation of motion we know that v^2=u^2+2as

16^2=24^2+2\times a\times 50

a=-3.2m/sec^2

(a) Now as the bus finally stops so final velocity v = 0 m/sec

So v^2=u^2+2as

0^2=24^2-2\times 3.2\times s

s= 90 m

So further distance traveled by bus = 90-50 =40 m

(b) Now as the bus finally stops so final velocity v= 0 m/sec

Initial velocity u = 24 m/sec

Acceleration a=-3.2m/sec^2

So time t=\frac{v-u}{a}=\frac{0-24}{-3.2}=7.5sec

7 0
3 years ago
A train starts from rest and travels for 5.0 s with a uniform acceleration of 1.5 m/s2. What is the final velocity of the train?
alexandr1967 [171]

Answer:

Final speed of the train is 7.5 m/s

Explanation:

It is given that,

Uniform acceleration of the train is, a = 1.5 m/s²

It starts from rest and travels for 5.0 s. We have to find the final velocity of the train. By using first equation of motion as :

v=u+at

Here, train starts from rest so, u = 0

v=0+1.5\ m/s^2\times 5\ s  

v = 7.5 m/s

So, the final velocity of the train is 7.5 m/s. Hence, this is the required solution.

7 0
3 years ago
Read 2 more answers
If you could shine a very powerful flashlight beam toward the Moon, estimate the diameter of the beam when it reaches the Moon.
grin007 [14]

To develop this problem it is necessary to apply the Rayleigh Criterion (Angular resolution)criterion. This conceptos describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution.  By definition is defined as:

\theta = 1.22\frac{\lambda}{d}

Where,

\lambda= Wavelength

d = Width of the slit

\theta= Angular resolution

Through the arc length we can find the radius, which would be given according to the length and angle previously described.

The radius of the beam on the moon is

r = l\theta

Relacing \theta

r = l(\frac{1.22\lambda}{d})

r = 1.22\frac{l\lambda}{d}

Replacing with our values we have that,

r = 1.22*(\frac{(384*10^3km)(\frac{1000m}{1km})(550*10^{-9}m)}{7*10^{{-2}}})

r = 3680.91m

Therefore the diameter of the beam on the moon is

d = 2r

d = 2 * (3690.91)

d = 7361.8285m

Hence, the diameter of the beam when it reaches the moon is 7361.82m

8 0
3 years ago
Which characterstic is related to kinetic enegry but not potential energy.
V125BC [204]

Answer:

A

Explanation:

Kinetic energy is the energy of motion

KE=.5mv^2

>m= mass

>v= velocity (m/s)

PE=mgh

>m= mass

>g= acceleration due to graviry

>h= height

8 0
3 years ago
A soda has a volume of 560 mL and a density of 3.2 g/mL. What is the mass?
kolbaska11 [484]
The correct answer is: 1792g or 1800g.

(When you round it)
8 0
3 years ago
Other questions:
  • Suppose that a nascar race car is moving to the right with a constant velocity of +82m/s. what is the average acceleration of th
    14·1 answer
  • What is happening in the brain, because people are so rude?
    10·2 answers
  • "If you double the wavelength of a wave on a particular string", what happens to the wave speed v and the frequency f ? (i) v do
    5·2 answers
  • Similar to Hippocrates, modern scientists who study etiology believe that
    9·1 answer
  • Producers,____________, and_______________ help to move matter and energy through ecosystems.
    10·1 answer
  • Gases have an indefinite shape and volume
    10·1 answer
  • What does the equation n =Pout/Pin mean
    8·2 answers
  • The temperature of a substance is 45 C. Convert this to Kelvin.
    14·1 answer
  • If a capital letter R is seen in an ordinary mirror , what does it look like?
    15·2 answers
  • Why is electrical energy considered as potential energy as its the energy of moving electrons?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!