Answer:
T = 692.42 N
Explanation:
Given that,
Mass of hammer, m = 8.71 kg
Length of the chain to which an athlete whirls the hammer, r = 1.5 m
The angular sped of the hammer, 
We need to find the tension in the chain. The tension acting in the chain is balanced by the required centripetal force. It is given by the formula as follows :

So, the tension in the chain is 692.42 N.
I'm not sure what you were trying to put here
A) The resultant force is 30.4 N at 
B) The resultant force is 18.7 N at 
Explanation:
A)
In order to find the resultant of the two forces, we must resolve each force along the x- and y- direction, and then add the components along each direction to find the components of the resultant.
The two forces are:
at
above x-axis
at
above y-axis
Resolving each force:


So, the components of the resultant are:

And the magnitude of the resultant is:

And the direction is:

B)
In this case, the 15 N is applied in the opposite direction to the 20 N force. Therefore we need to re-calculate its components, keeping in mind that the angle of the 15 N force this time is

So we have:

So, the components of the resultant this time are:

And the magnitude is:

And the direction is:

Learn more about vector addition:
brainly.com/question/4945130
brainly.com/question/5892298
#LearnwithBrainly
Answer:
in 1 second 3m, in 2 seconds 6m, in 3 seconds 9m.
Explanation:
distance=speed × time
<h3><u>Answer;</u></h3>
<em>Electric motor</em>
<h3><u>Explanation;</u></h3>
- <em><u>Energy</u></em> is the ability to do work. According to the law of conservation of energy,<em><u> energy can not be created nor destroyed but can be changed from one form to another</u></em>.
- Changing energy from one form to another is done by devices we call <em><u>transducers. These are elements that convert energy from one form to another.</u></em>
- In this case, electrical motor is an example of a transducer that converts electrical energy to kinetic energy. <em><u>Electrical energy is supplied to a the motor which converts it to rotational energy or mechanical energy then to kinetic energy.</u></em>