Answer: Speeding up the orbital speed of earth so it escapes the sun require the greater energy.
Explanation: To find the answer, we need to know more about the Orbital and escape velocities.
<h3>
What is Orbital and Escape velocity?</h3>
- Orbital velocity can be defined as the minimum velocity required to put the satellite in its orbit around the earth.
- The expression for orbital velocity near to the surface of earth will be,

- Escape velocity can be defined as the minimum velocity with which a body must be projected from the surface of earth, so that it escapes from the gravitational field of earth.
- The expression for orbital velocity will be,

- If we want to get into the sun, we want to slow down almost completely, so that your speed relative to the sun became almost zero.
- We need about twice the raw speed to go to the sun than to leave the sun.
Thus, we can conclude that, the speeding up the orbital speed of earth so it escapes the sun require the greater energy.
Learn more about orbital and escape velocity here:
brainly.com/question/28045208
#SPJ4
Answer:
The discharge rate is 
Explanation:
From the question we are told that
The diameter is 
The head is 
The coefficient of contraction is 
The coefficient of velocity is 
The radius is mathematically evaluated as

substituting values


The area is mathematically represented as

substituting values


The discharge rate is mathematically represented as

substituting values


True because it has "falling" ability
Answer:
4 capacitors
Explanation:
Given
--- conducting plates
Required
The number of capacitor (c)
This is calculated as:

So, we have:


Answer:
Explanation:
Initial angular velocity ω₀ = 151 x 2π / 60
= 15.8 rad /s
final velocity = 0
Angular deceleration α = 2.23 rad / s
ω² = ω₀² - 2 α θ
0 = 15.8² - 2 x 2.23 θ
= 55.99 rad
one revolution = 2π radian
55.99 radian = 55.99 / 2 π no of terns
= 9 approx .