To solve this problem we will use the definition of the period in a simple pendulum, which warns that it is dependent on its length and gravity as follows:

Here,
L = Length
g = Acceleration due to gravity
We can realize that
is a constant so it is proportional to the square root of its length over its gravity,

Since the body is in constant free fall, that is, a point where gravity tends to be zero:

The value of the period will tend to infinity. This indicates that the pendulum will no longer oscillate because both the pendulum and the point to which it is attached are in free fall.
22:54 is the answer you are looking for
A boy throws a ball and accidentally breaks a window. The momentum of the ball and all the pieces of glass taken together after the collision is the same as <span>the momentum of the ball before the collision. I think you forgot to give the choices along with the question. I hope that the answer has come to your great help.</span>
With time, momentum increases as it builds speed assuming their is nothing in the way to stop it. Based on the graph, you can see that example being displayed as the line on the graph gets higher