Well first do 20 children minus 8 girls to find how many boys there are:
20-8=16
So there are 16 boys. Therefore we can write the ratio of girls to boys as:
8/16
Then we can simplify this ratio by dividing it by 8 to get:
1/2
So the answer is the ratio of girls to boys in the group in simplest form is 1/2.
Answer:
27
Step-by-step explanation:
Let <em>g </em>be Gabrielle's age and <em>m </em>be Mikhail's age.
We can turn the statements the problem gives us into mathematical expressions to help us solve.
Gabrielle's age is two times Mikhail's age:
<em>g </em>= 2<em>m</em>
The sum of their ages is 81:
<em>g </em>+ <em>m </em>= 81
This gives us a system of equations that will allow us to solve for Gabrielle's age.
<em>g </em>+ <em>m </em>= 81
(2<em>m</em>)<em> </em>+ <em>m </em>= 81
3<em>m </em>= 81
<em>m</em> = 
<em>m </em>= 27
If we need to solve for Gabrielle's age, we can do the following.
<em>g </em>= 2<em>m</em>
2(27)<em> </em>= <em>g</em>
54 = <em>g</em>
g = 54
Mikhail's age is 27.
Gabrielle's age is 54.
Answer:
f(n) = -n^2 -3n +5
Step-by-step explanation:
Suppose the formula is ...
f(n) = an^2 +bn +c
Then we have ...
f(1) = 1 = a(1^2) +b(1) +c
f(2) = -5 = a(2^2) +b(2) +c
f(3) = -13 = a(3^2) +b(3) +c
__
Here's a way to solve these equations.
Subtract the first equation from the second:
-6 = 3a +b . . . . . 4th equation
Subtract the second equation from the third:
-8 = 5a +b . . . . . 5th equation
Subtract the fourth equation from the fifth:
-2 = 2a
a = -1
Then substituting into the 4th equation to find b, we have ...
-6 = 3(-1) +b
-3 = b
and ...
1 = -1 +(-3) +c . . . . . substituting "a" and "b" into the first equation
5 = c
The formula is ...
f(n) = -n^2 -3n +5
Answer: (x-5 ) (x-2)
Step-by-step explanation:
Answer:
One solution
Step-by-step explanation:
6x+35=-6x+35
Add 6x to both sides (addition property of equality)
12x+35=35
Subtract 35 from both sides (subtraction property of equality)
12x=0
Divide both sides by 12 (division property of equality)
x=0
Therefore there is only one solution, 0.