4.b.
Answer: See below.
Step-by-step explanation:
<h2><u>
For the equation f(x) = 2x</u></h2>
3.a. f(6) means use x = 6 in the equation f(x) = 2x
so f(6) would be f(6)= 2(6)
<u>f(6) = 12</u>
3.b. f(-11) = 2(-11)
<u>f(-11) = -22</u>
3.c. f(2.75) = 2(2.75)
<u>f(2.75) = 5.5</u>
3.d. This is turned around. We are told f(x)=20, so what would x need to be for f(x) to be 20? Since f(x) = 2x, we can say 20 = 2x. Therefore x = 10
f(10) = 20
<u>The rest of (3) are solved in the same fasion.h</u>
<u></u>
<h2><u>
For the equation f(x)= 5x+50</u></h2>
4.a. f(7) = 5(7)+50
<u>f(7) = 85</u>
4.b. f(-12)
f(-12) = 5*(-12)+50
<u>f(-12) = -60</u>
<u></u>
Continue in the same fashion for these types of problems.
Slimination
multiply first equaiton by 2
2x+6y=10
add to second equiaotn
2x-2x+6y-6y=10-10
0=0
this is true so therfor they are the same equaiton
so solve
x+3y=5
3y=-x+5
y=-1/3x+5/3
subsituter values for x and get valuse for y
if x=2 then y=1
Answer:
g . 47.6 degrees.
Step-by-step explanation:
g. The 3 towns form a right angled triangle and
tan A = BC/BA
= 105 / 96
A = 47.6 degrees.
<u>Part (a)</u>
The variable y is the dependent variable and the variable x is the independent variable.
<u>Part (b)</u>
The cost of one ticket is $0.75. Therefore, the cost of 18 tickets will be:
dollars
Now, we know that Kendall spent her money only on ride tickets and fair admission and that she spent a total of $33.50.
Therefore, the price of the fair admission is: $33.50-$13.50=$20
If we use y to represent the total cost and x to represent the number of ride tickets, the linear equation that can be used to determine the cost for anyone who only pays for ride tickets and fair admission can be written as:
......Equation 1
<u>Part (c)</u>
The above equation is logical because, in general, the total cost of the rides will depend upon the number of ride tickets bought and that will be 0.75x. Now, even if one does not take any rides, that is when x=0, they still will have to pay for the fair admission, and thus their total cost, y=$20.
Likewise, any "additional" cost will depend upon the number of ride tickets bought as already suggested. Thus, the total cost will be the sum of the total ride ticket cost and the fixed fair admission cost. Thus, the above Equation 1 is the correct representative linear equation of the question given.