Answer is: the combined ionic bond strength of CrCl₂ and intermolecular forces between water molecules.
When chromium chloride (CrCl₂) is dissolved in water, the temperature of the water increases, heat of the solution is endothermic.
Dissociation of chromium chloride in water: CrCl₂(aq) → Cr²⁺(aq) + 2Cl⁻(aq).
Energy (the lattice energy) is required to pull apart the oppositely charged ions in chromium chloride.
The heat of hydration is liberated energy when the separated ions (in this example chromium cations and chlorine anions) attract polar water molecules.
Because the lattice energy is higher than the heat of the hydration (endothermic reaction), we can conclude that bonds between ions are strong (the electrostatic attraction between oppositely charged ions).
<h3>
Answer:</h3>
#1. Balanced equation: 2C₅H₅ + Fe → Fe(C₅H₅)₂
#2. Type of reaction: Synthesis reaction
<h3>
Explanation:</h3>
- Balanced equations are equations that obey the law of conservation of mass.
- When an equation is balanced the number of atoms of each element is equal on both side of the equation.
- Equations are balanced by putting appropriate coefficients on the reactants and products.
- In our case, we are going to put coefficients 2, 1 and 1.
- Thus, the balanced equation will be;
2C₅H₅ + Fe → Fe(C₅H₅)₂
- This type of a reaction is known as synthesis reaction, in which two or more reactants or compounds combine to form a single compound or product.
Explanation:
Let us take the volume of block is x.
Since, the block is floating this means that it is in equilibrium. Formula to calculate net force will be as follows.

Also, buoyancy force
= (volume submerged in water × density of water) + (volume in oil × density of oil)
=
=
g
As, W = V × density of graphite × g
It is given that density of graphite is
or 2160
.
So, W = 2160 V g
= (0.592 V \rho + 408 V) g - 2160 V g = 0
= 1752
= 2959.46
or 2.959
is the density of oil.
It is given that mass of flask is 124.8 g.
Mass of 35.3
oil =
104.7 g
Hence, in second weighing total mass will be calculated as follows.
(124.8 + 104.7) g
= 229.27 g
Thus, we can conclude that in the second weighing mass is 229.27 g.
core electrons are those occupying the innermost or lowest energy levels