Answer:
The equilibrium temperature of the coffee is 72.4 °C
Explanation:
Step 1: Data given
Mass of cream = 15.0 grams
Temperature of the cream = 10.0°C
Mass of the coffee = 150.0 grams
Temperature of the coffee = 78.6 °C
C = respective specific heat of the substances( same as water) = 4.184 J/g°C
Step 2: Calculate the equilibrium temperature
m(cream)*C*(T2-T1) = -m(coffee)*c*(T2-T1)
15.0 g* 4.184 J/g°C *(T2 - 10.0°C) = -150.0g *4.184 J/g°C*(T2-78.6°C)
62.76T2 - 627.6 = -627.6T2 + 49329.36
690.36T2 = 49956.96
T2 = 72.4 °C
The equilibrium temperature of the coffee is 72.4 °C
Answer:
2Cl——>Cl2+2e-
Explanation:
It shows an electron loss or gain
Answer:

Explanation:
25. Boyle's Law
The temperature and amount of gas are constant, so we can use Boyle’s Law.

Data:

Calculations:

26. Ideal Gas Law
We have p, V and n, so we can use the Ideal Gas Law to calculate the volume.
pV = nRT
Data:
p = 101.3 kPa
V = 20 L
n = 5 mol
R = 8.314 kPa·L·K⁻¹mol⁻¹
Calculation:
101.3 × 20 = 5 × 8.314 × T
2026 = 41.57T

Answer:
The available amounts of each reactant
Explanation:
The limiting reactant is the reactant that will limit the equation.
For example, I have 2N2 and H2O. In this situation, H2O would be the limiting reactant since there is only one atom, while N2 has two atoms.
Think of it like you're making peanut butter and jelly. You have 50 cans of peanut butter and only 10 jelly. Which means you can only make sandwiches using 10 jars of jelly and 10 jars of peanut butter.
Answer:
Harmony is correct, because Mendeleev’s model made predictions that came true.
Explanation:
Mendeleev published periodic table.
Mendeleev also arranged the elements known at the time in order of relative atomic mass, but he did some other things that made his table much more successful.
Our answer is : Harmony is correct, because Mendeleev’s model made predictions that came true.