1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
3 years ago
7

Use the given transformation to evaluate the integral.

Mathematics
1 answer:
GuDViN [60]3 years ago
3 0

For the transformation

\begin{cases}x=7u+v\\y=u+7v\end{cases}

the Jacobian is

\dfrac{\partial(x,y)}{\partial(u,v)}=\begin{bmatrix}7&1\\1&7\end{bmatrix}

with determinant

\det\left(\begin{bmatrix}7&1\\1&7\end{bmatrix}\right)=48

The vertices of the triangle in the u,v-plane are

(x,y)=(0,0)\implies(u,v)=(0,0)

(x,y)=(7,1)\implies(u,v)=(1,0)

(x,y)=(1,7)\implies(u,v)=(0,1)

Then the integral is

\displaystyle\iint_R(x-8y)\,\mathrm dA=-48\int_0^1\int_0^{1-v}(u+55v)\,\mathrm du\,\mathrm dv=\boxed{-448}

You might be interested in
I need help with the whole homework and yeah plz answer and who ever answers gets a brainlist answer
pashok25 [27]

Answer:

1.) 357

2.) 221.5

3.) 72

4.) 1653

5.) 265

6.) 296

7.) 43.16

8.) 136

9.) 2486.33

10.)a. 48 b. 3

11.) 79

explantion: It breaks down a division problem into a series of easier steps. As in all division problems, one number, called the dividend, is divided by another, called the divisor, producing a result called the quotient.

https://www.theschoolrun.com/what-is-long-division

4 0
3 years ago
Find the vertex of the parabola.<br> F(x) = 5x^2 - 30x +49
Juli2301 [7.4K]

X=-b/2a is the formula for finding the axis of symmetry
So x= -30/2(5)
X=-30/10
X=-3

Because the axis of symmetry is -3, we know where to place our line, and we also know that the parabola is open downwards, which means that the vertex will be maximum. To find the vertex, plug in your values with the axis of symmetry as a midway point. Plug that in for x and so you should have the following:
F(x)
Y(f(x) and y variables are interchangeable) =5(-3)^2-30(-3)+49

Solve for y(f(x))
5(-3)^2-30(-3)+49
(-3)^2=3^2
3^2*5+30*3+49
Multiply
3^2*5+90+49
Add numbers
3^2*5+139
9*5=45
45+139=184
Y=184

So, your vertex would be
(-3,184) and it would be maximum. From there you can plug in the rest of your table of values.
4 0
3 years ago
Multiply:<br>(x+y)by (x+y)<br>a+b by a^2-b^2<br>(a+5) by (a^2-2a-3)<br>(a^2-ab+b^3) by (a+b)​
Law Incorporation [45]

Answer:

Multiply:

(x+y)by (x+y)

: \implies(x + y)(x + y)

: \implies \: x(x + y) + y(x + y)

: \implies {x}^{2}  + xy + xy +  {y}^{2}

: \implies{x}^{2}  + 2xy +  {y}^{2}

Multiply:

a+b \:  by  \: a^2-b^2

: \implies( {a}^{2}  +  {b}^{2} ) \times (a + b)

: \implies \:  {a}^{2} (a + b) -  {b}^{2} (a + b)

: \implies \:  {a}^{3}  +  {a}^{2} b -  {ab}^{2} -  {b}^{3}

Multiply:

(a+5) by (a^2-2a-3)

: \implies{(a + 5) \times ( {a}^{2} - 2a - 3) }

: \implies \: a({a}^{2} - 2a - 3) + 5( {a}^{2} - 2a - 3)

: \implies(a \times  {a}^{2}  - a \times 2a - a \times 3) + (5 \times  {a}^{2}  - 5 \times 2a - 5 \times 3)

: \implies{a}^{3} -  {2a}^{2} - 3a + 5 {a}^{2}   - 10a - 15

: \implies{ {a}^{3} +  {3a}^{2}   - 13a - 15}

Multiply:

(a^2-ab+b^3) by (a+b)

: \implies{(a + b) \times ( {a}^{2}  - ab +  {b}^{3} )}

: \implies \: a( {a}^{2} - ab +  {b}^{3}) + b( {a}^{2}  - ab +   {b}^{3}  )

: \implies {a}^{3} -  {a}^{2} b + a {b}^{3}  + {a^2b} -  {ab}^{2}  +  {b}^{4}

: \implies{ {a}^{3}+ab^3 - ab^2+ {b}^{4}  }

Step-by-step explanation:

\blue{ \frak{Seolle_{aph.rodite}}}

7 0
2 years ago
Integrate the following:<br><img src="https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Cint%20%5C%3A%20%20%5Ctan%28x%29%20%20%20%5
Korvikt [17]

Answer:

\huge \boxed{\red{ \boxed{  -  \cos(x)  + C}}}

Step-by-step explanation:

<h3>to understand this</h3><h3>you need to know about:</h3>
  • integration
  • PEMDAS
<h3>tips and formulas:</h3>
  • \tan( \theta)  =  \dfrac{ \sin( \theta) }{ \cos( \theta) }
  • \sf \displaystyle \int  \sin(x)   \: dx =    - \cos(x)  +   C
<h3>let's solve:</h3>
  1. \sf \: rewrite \:  \tan( \theta)  \:  as \:   \dfrac{ \sin( \theta) }{ \cos( \theta) }  :  \\   =  \displaystyle  \int \:  \frac{ \sin(x) }{ \cos(x) }  \cos(x)  \: dx \\   = \displaystyle \int \:  \frac{ \sin(x) }{ \cancel{\cos(x) }}   \: \cancel{ \cos(x)}  \: dx \\     = \displaystyle \int \:  \sin(x)   \: dx
  2. \sf \: use \: the \: formula : \\   \sf \displaystyle     - \cos(x)
  3. \sf add \: constant :  \\   -  \cos(x)  + C

\text{And we are done!}

6 0
3 years ago
Read 2 more answers
Need help ASAP! Due in 25 minutes
Flauer [41]

Answer:

D, the last answer choice

Step-by-step explanation:

y=mx+b is the formula. 2/3x is the slope and 3 is the y intercept.

4 0
3 years ago
Read 2 more answers
Other questions:
  • There is a supplementary angle with a ratio of 3:7. What is the measure of the larger angle?
    10·1 answer
  • CD is the perpendicular bisector of both XY and ST, and CY=20. Find SX.
    14·2 answers
  • How do you answer it and what's the answer
    12·1 answer
  • What’s the answer to this
    6·1 answer
  • Plezz help me I will mark you brainlyest!!!!!!!!!!!!!!!!!!!! ФФ
    9·2 answers
  • Please help find the percent of decrease?!
    14·2 answers
  • Suppose that y varies directly with x and y = 10 when x = 20. What is y when x = 15?
    15·1 answer
  • Is "A quotient of a number and seven" a expression or equation
    5·1 answer
  • Which is the product of (1 +41+3x) (2 - 7x–9x)?​
    15·1 answer
  • What is the value expression of the expression
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!