Answer:
500 nm
Explanation:
In this problem, we have a diffraction pattern created by light passing through a diffraction grating.
The formula to find a maximum in the pattern produced by a diffraction grating is the following:

where:
d is the distance between the lines in the grating
is the angle at which the maximum is located
m is the order of the maximum
is the wavelength of the light used
In this problem we have:
is the angle at which is located the 2nd-order bright line, which is the 2nd maximum
n = 5000 lines/cm is the number of lines per centimetre, so the distance between two lines is

Re-arranging the equation for
, we find the wavelength of the light used:

Answer:
a. x=5355m b. food
Explanation:
A wave is a disturbance wic travels through a medium, it transfers energy without the displacement of the medium itself.
the problem can be solved with this formula v
v=2x/t
v=speed of the ultrasonic wave in seawater
x=te distance between the seawater surface and the seawater bed
t=time it takes to travel to and fro te seawater bed to the surface
v= 1530 m/s, t=7 s , x=?
1530=2x/7
1530*7=2x
x=5355m
b. An example of stored h energy is food, petroleum etc.Chemical energy are Energy stored in the bonds of chemical compounds. Chemical energy may be released during a chemical reaction, often in the form of heat; called exothermic.
Reactions that require an input of heat to proceed may store some of that energy as chemical energy in newly formed bonds. we eat food so that we can h enough energy to carry out our day to day task.
Answer:
The force of gravity on earth, no matter the object is approximately 9.8 m/ s2 . The reason the crumpled paper hits the ground first is because of air resistance. A crumpled piece of paper has less surface area than an piece of paper that is not crumpled. More surface area means more air resistance.
Explanation:
velocity of disc 
lets call (h) 1 m to make it simple.
= 3.614 m/s
m/s pointing towards this:


velocity of hoop=
lets call (h) 1m to make it simple again.
m/s
![\sqrt(gh) = sqrt(hg)so [tex]4×V_d= \sqrt(4/3hg)V_h=\sqrt(hg)](https://tex.z-dn.net/?f=%5Csqrt%28gh%29%20%3D%20sqrt%28hg%29%3C%2Fp%3E%3Cp%3Eso%20%5Btex%5D4%C3%97V_d%3D%20%5Csqrt%284%2F3hg%29V_h%3D%5Csqrt%28hg%29)
The disc is the fastest.
While i'm on this subject i'll show you this:
Solid ball 
solid disc 
hoop 
The above is simplified from linear KE + rotational KE, the radius or mass makes no difference to the above formula.
The solid ball will be the faster of the 3, like above i'll show you.
solid ball: velocity 
let (h) be 1m again to compare.
m/s
solid disk speed 
uniform hoop speed 
solid sphere speed 