m = mass of the circular hoop
r = radius of the hoop
I = moment of inertia of the hoop
moment of inertia of the hoop about the center of hoop is given as
I = m r²
k = distance of the point of suspension from center of mass = r
using parallel axis theorem
I' = moment of inertia of hoop about the point of suspension
I' = I + m k²
I' = m r² + m k²
I' = m r² + m r²
I' = 2 m r²
Time period of oscillation for the hoop is given as
T = 2π sqrt(I'/mgk)
T = 2π sqrt(2 m r²/(mgr))
T = 2π sqrt(2 r/g)
since 2r = diameter = d
T = 2π sqrt(d/g)
Answer:
c. hot material must be rising from the Sun's hotter interior
Explanation:
Granulation is the grainy appearance of the solar photosphere produced by the top of the convection cells in the sun.
The grainy appearance are produced by granules on the photosphere of the sun and granules are caused by convection currents of plasma within the sun's convection zone.
The interior of these granules are brighter (and thus hotter) than the exterior of the granules which are darker.
<u>So, the granulation pattern that astronomers have observed on the surface of the Sun tells us that hot material must be rising from the Sun's hotter interior.</u>
- momentum
- Yes, if the elephant is standing still.
- Fullback
- impulse acting on it.
- 2.25 N∙s
- A cannon firing.
- Inelastic
- it stays the same
- When the cue ball contacts the other balls, momentum is transferred causing them to gain momentum and speed.
- less than 3 m/s
<h3><u><em>
these are all correct i got an 100%</em></u><em><u> </u></em></h3>
Only ' A ' is always true.<em> (choice-1)</em>
' B ' is not true when you drop a red hot spoon into cold soup.
' C ' is not true when you drop a red hot marble into a cool swimming pool.
Answer:
5.59 m/s2
Explanation:
F = 1900 N
m = 340 kg
F = ma
Therefore, a = 1900/340 = 5.59