Answer:
Technician A and Technician B both are right.
Explanation:
In an AC alternator, there are two windings
1. Stator winding (stationary)
2. Rotor winding (rotating)
The current is induced in the stationary coils due to the magnetic field produced by the rotor. The DC suppy is provided to the rotor winding via slip rings and brushes and a voltage regulator precisely controls this supply to control the current flow through the rotor.
Therefore, both technicians are right.
Answer:
Technician B
Explanation:
here on analyzing both the statements from technician A and technician B. The Statement from Technician B is more logical and correct. That the power-assisted brake system reduces the force that the driver must exert on the brake pedal.
The power-assisted brake system does not reduce the distance of stopping. What it does is it reduces the force to be applied by the driver. Thus, making the drive more comfortable.
Answer:
10.6cm
Explanation:
We are given 5.3cm below the starting point (spring extension).
Therefore, to find static vertical equilibrium, we use the equation:
kx = mg
Where:
k = spring constant =
=mg/5.3 kg/s²
We are told the object was dropped from rest.
Therefore:
loss in potential energy = gain in spring p.e
Let's use the expression:
mgx = ½kx²
We are asked to find the stretch at maximum elongation x.
To find x, we make x subject of the formula.
Therefore, we have:
x = 2mg/k (after rearranging the equation above)
x = (2mg) / (mg/5.3)
x = 10.6cm
Answer:
1%
Explanation:
Percent error can be found by dividing the absolute error (difference between measure and actual value) by the actual value, then multiplying by 100.

The measured value is 2.02 meters and the actual value is 2.00 meters.


First, evaluate the fraction. Subtract 2.00 from 2.02

Next, divide 0.02 by 2.00

Finally, multiply 0.01 and 100.

The percent error is 1%.
The final velocity of the projectile when it strikes the ground below is 198.51 m/s.
<h3>
Time of motion of the projectile</h3>
The time taken for the projectile to fall to the ground is calculated as follows;
h = vt + ¹/₂gt²
where;
- h is height of the cliff
- v is velocity
- t is time of motion
265 = (185 x sin45)t + (0.5)(9.8)t²
265 = 130.8t + 4.9t²
4.9t² + 130.8t - 265 = 0
solve the quadratic equation using formula method,
t = 1.89 s
<h3>Final velocity of the projectile</h3>
vyf = vyi + gt
where;
- vyf is the final vertical velocity
- vyi is initial vertical velocity
vyf = (185 x sin45) + (9.8 x 1.89)
vyf = 149.322 m/s
vxf = vxi
where;
- vxf is the final horizontal velocity
- vxi is the initial horizontal velocity
vxf = 185 x cos(45)
vxf = 130.8 m/s
vf = √(vyf² + vxf²)
where;
- vf is the speed of the projectile when it strikes the ground below
vf = √(149.322² + 130.8²)
vf = 198.51 m/s
Learn more about final velocity here: brainly.com/question/6504879
#SPJ1