1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vivado [14]
3 years ago
6

The graph for the function f(x) = -4 |x+2|+4 is shown below​

Mathematics
1 answer:
nalin [4]3 years ago
6 0

Answer:

domain:(-infinity, positive infinity)

range:(-infinity, 4]

Step-by-step explanation:

You might be interested in
The diameter of a flour tortilla is 12 inches. What is the total area of two tortillas to the nearest hundredth?
olga2289 [7]

the diameter of two tortillas would be 6, since 12+12=24. the diameter of 24 is 6, so that would be your answer....

5 0
3 years ago
Read 2 more answers
Put together, Dulcina and Tremaine have 129 total matchbooks. Tremaine's collection has 39 fewer matchbooks in it than Dulcina's
Anit [1.1K]

Answer:

Let the Dulcina's collection be 'x'

Let the Tremaine collection be 'x-39'

x + x - 39 =129

2x = 129 +39

2x = 168

x = 168/2

x = 84

Dulcina's collection = x = 84

Tremaine's collection = x - 39 = 84 - 39 = 45

7 0
3 years ago
Note: Enter your answer and show all the steps that you use to solve this problem in the space provided.
irakobra [83]

Answer:

a-9=20

a=20+9

a=29

b-9>20

b>29

6 0
3 years ago
I WILL MARK THE BRAINLIEST!!! One math question. please explain as well
8090 [49]
Surface area of a sphere=4pi(r^2)
Volume of a sphere=(4/3)pi(r^3)
You need to find the r value to calculate surface area, so I'll solve for that first.
(4/3)pi(r^3)=2254pi
(4/3)(r^3)=2254
r^3=1690.5
r=(1690.5)^(1/3), around 11.9126m
Substitute this in to find surface area
A=4pi(r^2)=4pi(11.9126)^2
=1783.2818 m^2
5 0
4 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Other questions:
  • A bakery sells a giant decorated cookie for birthdays. The area of the cookie is about 113 square inches. What is the circumfere
    6·1 answer
  • Can the set of numbers 8,12,4 make a triangle? And if it can, does it make a right triangle
    5·1 answer
  • Algebra 1 system of equations -10x − 7y = -12<br><br>x = 4
    10·2 answers
  • Simplify:6x+10y-3x-4y​
    9·2 answers
  • Becky took out an 80/20 mortgage on a $167,000 home. What is the amount
    9·2 answers
  • CAN YOU PLEASEEE HELP ME IM DESPERATE AND NEED THE ANSWER ASAP
    5·1 answer
  • Which ones are rational and which are irrational?
    12·1 answer
  • Heeeeeelpppppppppp<br> Meeeeeeeee<br><br> Find the missing lengths.
    11·1 answer
  • Rearrange<br> x= v+5<br> to make v the subject.
    6·2 answers
  • A gym charges $45 per month and a $75 one-time starting fee. Which of these
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!