Answer:
Step-by-step explanation:
Given that:
The differential equation; 
The above equation can be better expressed as:

The pattern of the normalized differential equation can be represented as:
y'' + p(x)y' + q(x) y = 0
This implies that:



Also;


From p(x) and q(x); we will realize that the zeroes of (x+2)(x-2)² = ±2
When x = - 2






Hence, one (1) of them is non-analytical at x = 2.
Thus, x = 2 is an irregular singular point.
Answer:
1 / 3^5
1/ 243
Step-by-step explanation:
3^4 ÷ 3^9
We know that a^b ÷ a^c = a^ ( b-c)
3 ^ ( 4-9)
3^ -5
We can rewrite this as a^-b = 1/ a^b
1 / 3^5
We know that 3^5 = 243
1/ 243
Answer:
10+5=15
Step-by-step explanation:
Hello from MrBillDoesMath!
Answer:
Top line: y = (2/3)x + 2
Bottom line: y = (2/3)x -1
Discussion:
The graph provided is hard to read but I did the best I could.
The top line appears to pass through the points (0,2) and (-3,0)
For this line
m = change y /change x = (0-2)/(-3-0) = -2/-3 = +2/3. So
y = mx + b => y = (2/3) x+ b. As the line passes through (0,2) set x = 0, y= 2 in y = (2/3)x + b =>
2 = (2/3) 0 + b => b = 2
Therefore y = (2/3)x + 2
The bottom line appears to pass through the points (0,-1) and (3,1)
For this line
m = change y /change x = (1-(-1)) /(3-0) = +2/-3. So
y = mx + b => y = (2/3) x+ b. As the line passes through (0,-1) set x = 0, y= -1 in y = (2/3)x + b =>
-1 = (2/3) 0 + b => b = -1
Therefore y = (2/3)x + -1
Thank you,
MrB
4 Aces, 4 2's, 4 3's 4 4's
= 16 cards total out of 52 cards
so probability would be 16/52 which reduces to 4/13