Answer:
Max kinetic energy for 340 nm wavelength will be 
Explanation:
In first case wavelength of electromagnetic radiation 
Plank's constant 
Maximum kinetic energy = 0.54 eV
Energy is given by 
We know that energy is given
, here
is work function
So 

Now wavelength of second radiation = 340 nm
So energy 
So 
Answer:
<h3>
The coefficient of kinetic friction between the puck and the ice is
0.12</h3>
Explanation:
Given :
Initial speed 
Displacement
m
From the kinematics equation,

Where
final velocity, in our example it is zero (
),
acceleration.


From the formula of friction,

Minus sign represent friction is oppose the motion
Where
( normal reaction force )
( ∵
)
So coefficient of friction,


Therefore, the coefficient of kinetic friction between the puck and the ice is
0.12 .
Answer:
Δe=0.578 kJ/kg
Explanation:
Given data
Velocity v₁=0 m/s
Velocity v₂=34 m/s
to find
Specific energy change Δe
Solution
The specific energy change is simply determined from change in velocity
Δe=(v₂²-v₁²)/2
Put the given values to find the specific energy change

Δe=0.578 kJ/kg
Answer:
Please help on any part you can. I know it is a lot but any help I’d greatly appreciate. I attempted the problem but still do not understand. Thank you so much!
Explanation:
Please help on any part you can. I know it is a lot but any help I’d greatly appreciate. I attempted the problem but still do not understand. Thank you so much!
