Answer:
a-1) Pv = 52549
a-2) Pv = 56822
b-1) Fv = 77570
b-2 Fv = 83878
Explanation:
b-1) Future value:
S= Sum of amount of annuity=?
n=number of fixed periods=5 years
R=Fixed regular payments=13200
i=Compound interest rate= .081 (suppose annualy)
we know that ordinary annuity:
S= R [(1+i)∧n-1)]/i
= 13200[(1+.081)∧5-1]/.081
=13200(1.476-1)/.081
= 13200 * 5.8765
S = 77570
a.1)Present value of ordinary annuity:
Formula: Present value = C* [(1-(1+i)∧-n)]/i
=13200 * [(1-(1+.081)∧-5]/.081
=13200 * (1-.6774)/.081
=13200 * (.3225/.081)
=52549
a.2)Present value of ordinary Due:
Formula : Present value = C * [(1-(1+i)∧-n)]/i * (1+i)
= 13200 * [(1- (1+.081)∧-5)/.081 * (1+.081)
= 13200 * 3.9822 * 1.081
= 56822
b-2) Future value=?
we know that: S= R [(1+i)∧n+1)-1]/i ] -R
= 13200[ [ (1+.081)∧ 5+1 ]-1/.081] - 13200
= 13200 (.5957/.081) -13200
= (13200 * 7.3544)-13200
= 97078 - 13200
= 83878