To get the points at which the two boats meet we need to find the equations that model their movement:
Boat A:
vertex form of the equation is given by:
f(x)=a(x-h)^2+k
where:
(h,k) is the vertex, thus plugging our values we shall have:
f(x)=a(x-0)^2+5
f(x)=ax^2+5
when x=-10, y=0 thus
0=100a+5
a=-1/20
thus the equation is:
f(x)=-1/20x^2+5
Boat B
slope=(4-0)/(10+10)=4/20=1/5
thus the equation is:
1/5(x-10)=y-4
y=1/5x+2
thus the points where they met will be at:
1/5x+2=-1/20x^2+5
solving for x we get:
x=-10 or x=6
when x=-10, y=0
when x=6, y=3.2
Answer is (6,3.2)
Answer:
x = - 4
Step-by-step explanation:
5x + 55 = 35 ( subtract 55 from both sides )
5x = - 20 ( divide both sides by 5 )
x = - 4
<em>☽------------❀-------------☾</em>
<em>Hi there!</em>
<em>~</em>
<em> ≈ </em>
<em>So </em>
<em> is irrational (since the decimal portion doesn't terminate or repeat) </em>
<em>❀Hope this helped you!❀</em>
<em>☽------------❀-------------☾</em>
(The other person copied there answer from google!)
Integrating with shells is the easier method.
<em>V</em> = 2<em>π</em> ∫₁³ <em>x</em> (√<em>x</em> + 3<em>x</em>) d<em>x</em>
That is, at various values of <em>x</em> in the interval [1, 3], we take <em>n</em> shells of radius <em>x</em>, height <em>y</em> = √<em>x</em> + 3<em>x</em>, and thickness ∆<em>x</em> so that each shell contributes a volume of 2<em>π</em> <em>x</em> (√<em>x</em> + 3<em>x</em>) ∆<em>x</em>. We then let <em>n</em> → ∞ so that ∆<em>x</em> → d<em>x</em> and sum all of the volumes by integrating.
To compute the integral, just expand the integrand:
<em>V</em> = 2<em>π</em> ∫₁³ (<em>x </em>³ʹ² + 3<em>x</em> ²) d<em>x</em>
<em>V</em> = 2<em>π</em> (2/5 <em>x </em>⁵ʹ² + <em>x</em> ³) |₁³
<em>V</em> = 2<em>π</em> ((2/5 ×<em> </em>3⁵ʹ² + 3³) - (2/5 × 1⁵ʹ² + 1³))
<em>V</em> = 4<em>π</em>/5 (9√3 + 64)