4(x-3)-(2x+5)=-3x-27
4*x - 4*3 - 2x - 5 = -3x - 27
4x - 12 - 2x - 5 = -3x - 27
2x - 17 = -3x - 27
2x + 3x = -27 + 17
5x = -10 / : 5
x = -2
3√1024<span>= 10.079368399159
That's your answer.
</span>
The rolls of the dice are independent, i.e. the outcome of the second die doesn't depend in any way on the outcome of the first die.
In cases like this, the probability of two events happening one after the other is the multiplication of the probabilities of the two events.
So, the probability of rolling two 6s is the multiplication of the probabilities of rolling a six with the first die, and another six with the second:

Similarly,

Actually, you can see that the probability of rolling any ordered couple is always 1/36, since the probability of rolling any number on both dice is 1/6:

Answer:
Step-by-step explanation:
First confirm that x = 1 is one of the zeros.
f(1) = 2(1)^3 - 14(1)^2 + 38(1) - 26
f(1) = 2 - 14 + 38 - 26
f(1) = -12 + 38 = + 26
f(1) = 26 - 26
f(1) = 0
=========================
next perform a long division
x -1 || 2x^3 - 14x^2 + 38x - 26 || 2x^2 - 12x + 26
2x^3 - 2x^2
===========
-12x^2 + 28x
-12x^2 +12x
==========
26x -26
26x - 26
========
0
Now you can factor 2x^2 - 12x + 26
2(x^2 - 6x + 13)
The discriminate of the quadratic is negative. (36 - 4*1*13) = - 16
So you are going to get a complex result.
x = -(-6) +/- sqrt(-16)
=============
2
x = 3 +/- 2i
f(x) = 2*(x - 1)*(x - 3 + 2i)*(x - 3 - 2i)
The zeros are
1
3 +/- 2i
Answer:
10 flags
Step-by-step explanation:
30/3=10
3 intervals of making 10 flags to get 30 flags