1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Varvara68 [4.7K]
3 years ago
10

The equation giving a family of ellipsoids is u = (x^2)/(a^2) + (y^2)/(b^2) + (z^2)/(c^2) . Find the unit vector normal to each

point of the surface of this ellipsoids.
Mathematics
1 answer:
Fynjy0 [20]3 years ago
3 0

Answer:

\hat{n}\ =\ \ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}

Step-by-step explanation:

Given equation of ellipsoids,

u\ =\ \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}

The vector normal to the given equation of ellipsoid will be given by

\vec{n}\ =\textrm{gradient of u}

            =\bigtriangledown u

           

=\ (\dfrac{\partial{}}{\partial{x}}\hat{i}+ \dfrac{\partial{}}{\partial{y}}\hat{j}+ \dfrac{\partial{}}{\partial{z}}\hat{k})(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2})

           

=\ \dfrac{\partial{(\dfrac{x^2}{a^2})}}{\partial{x}}\hat{i}+\dfrac{\partial{(\dfrac{y^2}{b^2})}}{\partial{y}}\hat{j}+\dfrac{\partial{(\dfrac{z^2}{c^2})}}{\partial{z}}\hat{k}

           

=\ \dfrac{2x}{a^2}\hat{i}+\ \dfrac{2y}{b^2}\hat{j}+\ \dfrac{2z}{c^2}\hat{k}

Hence, the unit normal vector can be given by,

\hat{n}\ =\ \dfrac{\vec{n}}{\left|\vec{n}\right|}

             =\ \dfrac{\dfrac{2x}{a^2}\hat{i}+\ \dfrac{2y}{b^2}\hat{j}+\ \dfrac{2z}{c^2}\hat{k}}{\sqrt{(\dfrac{2x}{a^2})^2+(\dfrac{2y}{b^2})^2+(\dfrac{2z}{c^2})^2}}

             

=\ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}

Hence, the unit vector normal to each point of the given ellipsoid surface is

\hat{n}\ =\ \ \dfrac{\dfrac{x}{a^2}\hat{i}+\ \dfrac{y}{b^2}\hat{j}+\ \dfrac{z}{c^2}\hat{k}}{\sqrt{(\dfrac{x}{a^2})^2+(\dfrac{y}{b^2})^2+(\dfrac{z}{c^2})^2}}

You might be interested in
Solve the simultaneous equations<br> 5y−4x=8<br> y+x=7<br><br> x= ?<br> y= ?
inna [77]

Answer:

x=3 y=4

Step-by-step explanation:

5(4)=20

4(3)= 12

20-12=8

4+3=7

4 0
2 years ago
Read 2 more answers
I need y’all helpppp
docker41 [41]

Answer:

the answer is A

6 0
3 years ago
Help its due in 5 mins lol
inessss [21]
Y= 26 & x=35 hope I did it on time!
6 0
2 years ago
Which expression gives the distance between the points (5, 1) and (9,-6)?
8_murik_8 [283]

9514 1404 393

Answer:

  C.  √((5-9)² +(1+6)²)

Step-by-step explanation:

The distance formula can be written ...

  d = √((x1 -x2)² +(y1 -y2)²)

Filling in the given point coordinates, this becomes ...

  d = √((5 -9)² +(1 -(-6))²)

Simplifying the signs, this becomes ...

  d = √((5 -9)² +(1 +6)²) . . . . . matches choice C

8 0
2 years ago
Simplify by dividing (-5/8)÷(-3/4)​
Olenka [21]
Here pls give brainliest

8 0
2 years ago
Read 2 more answers
Other questions:
  • The best estimate of 45 percent of 76
    15·2 answers
  • If M (6,8) is the midpoint of line segment AB, and if A has coordinates (2,3) , find the coordinates of B.
    15·1 answer
  • 3/11 de una caja contiene 18 galletas, cuantas galletas contiene una caja?
    15·1 answer
  • Solve for a:<br> 35= -7a+14
    11·2 answers
  • I need some help with this question
    7·2 answers
  • An airplane leaves an airport at 9:00 p.M. With a heading of 270 and a speed of 610 mph. At 10:00 p.M. The pilot changes the he
    10·1 answer
  • 2 in. 4 in. Q. What is the volume of the composite solid? (round to nearest whole number)​
    9·1 answer
  • 2. Which statement is not true in the equation
    12·1 answer
  • HELP I NEED TO SIMPLIFY THIS
    13·2 answers
  • SOMEONE HELP!!!
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!