<span>Quickly create a Microsoft Excel formula to get the sum of all cells by </span>highlighting<span>the cells you want to know the value of and pressing </span>Alt<span> and </span>=(equals<span>) together.</span>
Answer:
The balanced DFD (Data flow diagram) is the concept of the balancing all the state and incoming and also outgoing flow in the system.
The balanced data flow diagram basically ensure that the output and input data flow maintain the consistency in the DFD and are properly aligned the flow of data.
A balanced DFD does not include any type of flowchart in the control statement and also does not contain any crossing lines.
Answer:
You should be aware of the components because of the security and the performance of your computer, if your hardware is damaged, your software may be too, and your computer may be in risk, and anyone likes computers with bad performance
brainliest please :)
Answer:
If a museum charges different prices based on the day of the week and age of the visitor. The pricing rules are shown below.
- On Tuesday and Thursday children 10 and under get in free ($ 0).
- For all other days and ages the cost is ten dollars ($ 10).
The code in python is;
if (day == 'Tuesday' or day == 'Thursday') and age <= 10:
price = 0
else:
price = 10
Explanation:
The logic of the algorithm suggests that that the conditional if-statement assigns zero to the price variable if the day variable is either Tuesday or Thursday and the child's age is 10 or below but assigns 10 to the price variable if the condition is not met.
Note: The matrix referred to in the question is: ![M = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]](https://tex.z-dn.net/?f=M%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2F2%261%2F3%260%5C%5C1%2F2%261%2F3%260%5C%5C0%261%2F3%261%5Cend%7Barray%7D%5Cright%5D)
Answer:
a) [5/18, 5/18, 4/9]'
Explanation:
The adjacency matrix is ![M = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]](https://tex.z-dn.net/?f=M%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2F2%261%2F3%260%5C%5C1%2F2%261%2F3%260%5C%5C0%261%2F3%261%5Cend%7Barray%7D%5Cright%5D)
To start the power iteration, let us start with an initial non zero approximation,
![X_o = \left[\begin{array}{ccc}1\\1\\1\end{array}\right]](https://tex.z-dn.net/?f=X_o%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
To get the rank vector for the first Iteration:

![X_1 = \left[\begin{array}{ccc}1/2&1/3&0\\1/2&1/3&0\\0&1/3&1\end{array}\right]\left[\begin{array}{ccc}1\\1\\1\end{array}\right] \\\\X_1 = \left[\begin{array}{ccc}5/6\\5/6\\4/3\end{array}\right]\\](https://tex.z-dn.net/?f=X_1%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%2F2%261%2F3%260%5C%5C1%2F2%261%2F3%260%5C%5C0%261%2F3%261%5Cend%7Barray%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5C%5C1%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5CX_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%2F6%5C%5C5%2F6%5C%5C4%2F3%5Cend%7Barray%7D%5Cright%5D%5C%5C)
Multiplying the above matrix by 1/3
![X_1 = \left[\begin{array}{ccc}5/18\\5/18\\4/9\end{array}\right]](https://tex.z-dn.net/?f=X_1%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%2F18%5C%5C5%2F18%5C%5C4%2F9%5Cend%7Barray%7D%5Cright%5D)