Answer: C
Explanation:
According to Neils Bohr, atoms contain electrons which are arranged in energy levels. The energy levels proceed from the lowest to the highest. When energy is supplied to an atom,it moves from lower to higher energy levels. The higher energy level is known as the excited state. Excited states are short lived and atoms quickly return to ground state with emission of the absorbed energy in the form of visible light. This visible light must have one of the seven colours observed in the visible spectrum; Red, orange, yellow, indigo, blue, green, violet. Energy required for this excitation is supplied by heating the substance in a flame.
1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
<h3>What is an ideal gas equation?</h3>
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas. The terms are: p = pressure, in pascals (Pa). V = volume, in
.
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol:
PV= nRT
Given data:
P=100.0 kPa =0.986923 atm
T=100 degree celcius= 100 + 273 =373 K
V=35.5 L
Substituting the values in the equation.
n= 
n= 1.137448506 mol
Hence, 1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
Learn more about ideal gas here:
brainly.com/question/16552394
#SPJ1
Answer:
find the answer elsewhere
Explanation:
Answer:
False
Explanation:
Amplitude does not affect wavelength