The answer is 3.39 mol.
<span>Avogadro's number is the number of molecules in 1 mol of substance.
</span><span>6.02 × 10²³ molecules per 1 mol.
</span>2.04 × 10²⁴<span> molecules per x.
</span>6.02 × 10²³ molecules : 1 mol = 2.04 × 10²⁴ molecules : x
x = 2.04 × 10²⁴ molecules * 1 mol : 6.02 × 10²³ molecules
x = 2.04/ 6.02 × 10²⁴⁻²³ mol
x = 0.339 × 10 mol
<span>x = 3.39 mol
</span>
Answer:
932.44 km/s
Explanation:
Given that:
The work function of the magnesium = 2.3 eV
Energy in eV can be converted to energy in J as:
1 eV = 1.6022 × 10⁻¹⁹ J
So, work function =
Using the equation for photoelectric effect as:
Also,
Applying the equation as:
Where,
h is Plank's constant having value
c is the speed of light having value
m is the mass of electron having value
is the wavelength of the light being bombarded
v is the velocity of electron
Given,
Thus, applying values as:
v = 9.3244 × 10⁵ m/s
Also, 1 m = 0.001 km
<u>So, v = 932.44 km/s</u>
Answer:

Explanation:
Here, we want to calculate the final volume
We use the general gas equation here:

P1 is the initial pressure which is 0.850 atm
V1 is the initial volume which is 4.25 L
T1 is the initial temperature which is (23 + 273.15 = 296.15 K)
P2 is the final pressure which is 1.50 atm
V2 is the final volume which is unknown
T2 is the final temperature (11.5 + 273.15 = 284.65 K)
Substituting the values, we have:
Answer:
20.0 grams
Explanation:
If the density of gold is 20.0 g/mL, then we can multiply it by 1 mLto find the weight of 1 mL of gold.
20.0
*1mL=20.0 grams
Moles = mass/molar mass
moles = 2.3
molar mass = 278
=> mass = moles*molar mass = 639.4g