Answer:
The first period is the shortest in the long form of periodic table
Explanation:
the long form or the modern periodic table is based on ht modern periodic law. it has 7 periods and 18 groups. this periodic table is widely used by people all over the world. the chemical and physical properties of the elements can be easily identified due to their classification into groups and periods or their position in the periodic table. the first period is the shortest in the long form of periodic table. there are two elements present, they are- hydrogen(H) and helium (He)
You can tell that the atom is in the excited state because:
- Electron configuration should follow the 2-8-8-2 rule, meaning that the inner shell should be filled before the next shell can start holding electrons.
- Instead of the atom's electron configuration being in the ground state at 2-8-8-1, electrons from the second shell have jumped to the third.
Educated Guess Here!
Since Br-80 does not exist, maybe that means Br-79 or Br-81 have very unequal abundances. For example, Br-79 may have 75% abundance whereas Br-81 may have 25% abundance.
The answer is 34.1 mL.
Solution:
Assuming ideal behavior of gases, we can use the universal gas law equation
P1V1/T1 = P2V2/T2
The terms with subscripts of one represent the given initial values while for terms with subscripts of two represent the standard states which is the final condition.
At STP, P2 is 760.0torr and T2 is 0°C or 273.15K. Substituting the values to the ideal gas expression, we can now calculate for the volume V2 of the gas at STP:
(800.0torr * 34.2mL) / 288.15K = (760.0torr * V2) / 273.15K
V2 = (800.0torr * 34.2mL * 273.15K) / (288.15K * 760.0torr)
V2 = 34.1 mL
Answer:
A.
Explanation:
An equation with the equal amount and proportion of atoms of each element on both sides of the reaction is commonly referred to as a balanced chemical equation.
The law of conservation of matter asserts that no observable and empirical change in the amount of matter occurs within a conventional chemical process. As a result, each element in the product would have the same equal amount or numbers of atoms as the reactants.