Answer:
Vrms = 291 m/s
Explanation:
The root mean square velocity or vrms is the square root of the average square velocity and is. vrms=√3RTM. Where M is equal to the molar mass of the molecule in kg/mol.
Temperature = 365 K
Root mean square velocity = ?
molar mass of oxygen = 16 g/mol.
But xygen gas (O2) is comprised of two oxygen atoms bonded together. Therefore:
molar mass of O2 = 2 x 16
molar mass of O2 = 32 g/mol
Convert this to kg/mol:
molar mass of O2 = 32 g/mol x 1 kg/1000 g
molar mass of O2 = 3.2 x 10-2 kg/mol
Molar mass of Oxygen = 3.2 x 10-2 kg/mol
Vrms = √[3(8.3145 (kg·m2/sec2)/K·mol)(365 K)/3.2 x 10-2 kg/mol]
Vrms = 291 m/s
Answer:

I guess you can round it to 11 seconds.
Explanation:
Going with a speed 9m/s means you are going 9 meters in each second.
If you are going 9 meters in second how many seconds will it take to 100 meters?
Visually;
9 meters - - - 1 second
100 meters - - - ?seconds.
When you write like this 9 times ?seconds equal to 100 meters time 1 second. (you probably know this but just in case)
So to find ?second you multiply 100meters by 1 and divide it by 9 whixh will give you 11.1111 seconds whixh again I believe you can round it to 11.
(Kind of a) Proof;
If 9m * ?sec = 100 m * 1 sec
you send 9 meters to other side.
?sec = (100 m * 1 sec) ÷ 9m
Hope it was clear and it helps! Please let me know if you have any questions.
Answer:
The colors of the sunset result from a phenomenon called scattering. Molecules and small particles in the atmosphere change the direction of light rays, causing them to scatter. ... The short-wavelength blue and violet are scattered by molecules in the air much more than other colors of the spectrum.
Explanation:
This attraction occurs from adhesion, also known as adsorption <span />
Observe that the object below moves in the negative direction with a changing velocity. An object which moves in the negative direction has a negative velocity. If the object is slowing down then its acceleration vector is directed in the opposite direction as its motion (in this case, a positive acceleration). The dot diagram shows that each consecutive dot is not the same distance apart (i.e., a changing velocity). The position-time graph shows that the slope is changing (meaning a changing velocity) and negative (meaning a negative velocity). The velocity-time graph shows a line with a positive (upward) slope (meaning that there is a positive acceleration); the line is located in the negative region of the graph (corresponding to a negative velocity). The acceleration-time graph shows a horizontal line in the positive region of the graph (meaning a positive acceleration).
I don't know how I can show you the figure