Answer:
The problem occurs with all spherical mirrors.
Spherical mirrors are practical up to about inches in diameter.
Reflecting telescopes use spherical mirrors for apertures up to about 4 ".
Larger aperture telescopes use parabolic mirrors to obtain sharp focus.
Answer:
130 cm
Explanation:
After each bounce, the mechanical energy decreases by 18%, which means the maximum height decreases by 18%. Modeling this as exponential decay:
h = 290 (1 − 0.18)ⁿ
h = 290 (0.82)ⁿ
h = 290 (0.82)⁴
h = 130
The ball reaches a height of 130 cm.
First, let us derive our working equation. We all know that pressure is the force exerted on an area of space. In equation, that would be: P = F/A. From Newton's Law of Second Motion, force is equal to the product of mass and gravity: F = mg. So, we can substitute F to the first equation so that it becomes, P = mg/A. Now, pressure can also be determined as the force exerted by a fluid on an area. This fluid can be measure in terms of volume. Relating volume and mass, we use the parameter of density: ρ = m/V. Simplifying further in terms of height, Volume is the product of the cross-sectional area and the height. So, V = A*h. The working equation will then be derived to be:
P = ρgh
This type of pressure is called the hydrostatic pressure, the pressure exerted by the fluid over a known height. Next, we find the literature data of the density of seawater. From studies, seawater has a density ranging from 1,020 to 1,030 kg/m³. Let's just use 1,020 kg/m³. Substituting the values and making sure that the units are consistent:
P = (1,020 kg/m³)(9.81 m/s²)(11 km)*(1,000 m/1km)
P = 110,068,200 Pa or 110.07 MPa
Answer:
α = 3.27 rad/s²
No
Explanation:
Given that
L= 3 m
Lets take mass of tree = m kg
The torque to mass m = m g .L
The mass moment of inertia of tree ,I
I = mL² kg.m²
We know that
τ = I α
m g .L = mL² .α
α= g/L
Now by putting the value

α = 3.27 rad/s²
No we can find the mass of the from the above information because angular acceleration is not depend on the mass of tree.