The correct answer is matter. Matter is a physical substance, so it is that only option provided that can be broken down to the subatomic particle level.
Https://www.slideshare.net/mobile/jan_parker/life-cycle-of-stars-3196871
the answer to your question!
Answer:
7.65x10^3 m/s
Explanation:
The computation of the satellite's orbital speed is shown below:
Given that
Earth mass, M_e = 5.97 × 10^24 kg
Gravitational constant, G = 6.67 × 10^-11 N·m^2/kg
Orbital radius, r = 6.80 × 10^6m
Based on the above information
the satellite's orbital speed is
V_o = √GM_e ÷ √r
= √6.67 × 10^-11 × 5.97 × 10^24 ÷ √6.80 × 10^6
= 7.65x10^3 m/s
Answer:
Explanation:
(a) It is given that Joseph jogs on a straight road of 300m in a time interval of 2 minutes and 30 seconds, which is equal to 150seconds. Therefore, when Joseph jogs from point A to point B, he covers a distance of 300m in time of 150seconds. Hence, his average speed is 300m/150s=2ms^−1. Since it is a straight road and he jogs in a single direction in this case, his displacement is equal to 300m. Since it is a straight road and he jogs in a single direction in this case, his displacement is equal to 300m.
Hence, his average velocity is 300m/150s=2ms^−1
(b) Then it is given that he turns back and points B and jogs on the same road but in the opposite direction for a time interval for 1 minute and covers a distance of 100m.If we consider the whole motion of Joseph, i.e. from point A to point C, then he covers a total distance of 300m+100m=400m. And he covers this total distance in a time interval of 2.5min+1min=3.5min=210s.
Therefore, his average speed for this journey is 400m210s=1.9ms−1.
For the same journey is displacement is equal to the distance between the points A and C,i.e. 300m−100m=200m.
Hence, his average velocity for this case is 200m/210s=0.95ms^−1