I mean if he flies 5g that means that's his average speed too
Answer:
R₁ = 50.77 Ω
Explanation:
Since, we know that:
Electric Power = P = VI
but from Ohm's Law:
V = IR
(or) I = V/R
Therefore,
P = V²/R
(OR) R = V²/P
where,
V = Battery Voltage
R = Resistance of combination
FOR SERIES COMBINATION:
R = Rs = (57 V)²/48 W
Rs = 67.69 Ω
but, we know that:
Rs = R₁ + R₂
R₁ + R₂ = 67.69 Ω
R₁ = 67.69 Ω - R₂ __________ eqn (1)
FOR PARALLEL COMBINATION:
R = Rp = (57 V)²/256 W
Rp = 12.69 Ω
but, we know that:
Rp = (R₁R₂)/(R₁ + R₂) = 12.69 Ω
using eqn (1) and value of R₁ + R₂, we get
Rp = 12.69 = R₂(67.69 - R₂)/67.69
859.08 = 67.69 R₂ - R₂²
R₂² - 67.69 R₂ + 859.08 = 0
Solving this quadratic equation we get the answers:
Either, R₂ = 50.76 Ω
Either, R₂ = 16.92 Ω
Since, it is stated in the question that R₁ > R₂. Therefore, we choose the second value. So,
<u>R₂ = 16.92 Ω</u>
using this value in eqn (1), we get:
R₁ = 67.69 Ω - 16.92 Ω
<u>R₁ = 50.77 Ω</u>
Answer:
t = 3.48 s
Explanation:
The time for the maximum height can be calculated by taking the derivative of height function with respect to time and making it equal to zero:

where,
v₀ = initial speed = 110 ft/s
Therefore,

<u>t = 3.48 s</u>
it's def. TRUE. i got the same question and i got it right
<h2>distance = 523 cm</h2>
Explanation:
( a ) The rotational speed of the ladybug = 25 r.p.m = 25/60 r.p.s
= 5/12 rev/sec
( b ) The definition of frequency is the number of rotations per second .
Here the number of rotations per second is 5/12 . Thus frequency = 5/12 Hz
( c ) The tangential speed is v = angular velocity x radius of rotation
The angular velocity ω = 2π x n , where n is the number of rotations per second
Thus angular velocity = 2π x 5/12 = 5π/6 rad/sec
The linear velocity = angular velocity x distance from center of record
Thus tangential speed = 5π/6 x 10 = 25π/3 cm/sec
Angular displacement in 20 sec = ω x t = 5π/6 x 20 = 50π/3 rad
Linear displacement = angular displacement x distance from center of record
= 50π/3 x 10 = 500π/3 = 523 cm