Answer: Option (a) is the correct answer.
Explanation:
Entropy is defined as the degree of randomness present in a substance. This means that more randomly the atoms in a substance are moving more will be entropy of the substance.
Entropy of a substance increases with increase in temperature.
For example, when a piece of wood is burned then its molecules will gain kinetic energy and hence, they start to move randomly from one place to another.
As a result, there will occur an increase in its entropy.
Thus, we can conclude that when a piece of wood is burned then its entropy increases.
White light is consists of red,blue and green lights yellow lights are consists of red and green lights so when the white light falls on the lens the light that passes through is blue
Solution :
Energy of photon, E = 6.7 eV
E =
joule
Kinetic energy, 


Kinetic energy at high speeds


r - 1 = 7130
r = 7130 + 1
r = 7131


![$v^2=C^2\left[1-\left(\frac{1}{7131}\right)^2\right]$](https://tex.z-dn.net/?f=%24v%5E2%3DC%5E2%5Cleft%5B1-%5Cleft%28%5Cfrac%7B1%7D%7B7131%7D%5Cright%29%5E2%5Cright%5D%24)

Δ = 1 - 0.99999999017
= 0.00000000933
Relative mass, 

kg
I think you mean the Cryosphere?
But the answer is D- Earths Ice
This word Cryosphere comes from the greek word "kryos" which means cold
Many people think of the cryosphere as being the north and south poles but snow and ice can be found in a lot of places on the Earth
<span>95 km/h = 26.39 m/s (95000m/3600 secs)
55 km/h = 15.28 m/s (55000m/3600 secs)
75 revolutions = 75 x 2pi = 471.23 radians
radius = 0.80/2 = 0.40m
v/r = omega (rad/s)
26.39/0.40 = 65.97 rad/s
15.28/0.40 = 38.20 rad/s
s/((vi + vf)/2) = t
471.23 /((65.97 + 38.20)/2) = 9.04 secs
(vf - vi)/t = a
(38.20 - 65.97)/9.04 = -3.0719
The angular acceleration of the tires = -3.0719 rad/s^2
Time is required for it to stop
(0 - 38.20)/ -3.0719 = 12.43 secs
How far does it go?
65.97 - 38.20 = 27.77 M</span>