Answer:
Each student ticket costs $8.33
Each adult ticket costs $15.34
Step-by-step explanation:
At Niagra High, Mr. Borton bought 4 student tickets and 2 adult tickets for the high school musical which cost $64. then Mrs. Gelvoria bought 3 student tickets and 3 adult tickets for the show and it cost her $72. How much are each type of tickets?
s = cost of each student ticket
a = cost of adult ticket
Our system of equations:
4s + 2a = 64
3s + 3a = 71
-3(4s + 2a = 64) ==> -12s - 6a = -192
2(3s + 3a = 71) ==> 6s + 6a = 142
-12s - 6a = -192
6s + 6a = 142
-6s = -50
/-6 /-6
s = $8.33 (the cost of each student ticket)
Now, let's find the cost of each adult ticket:
4s + 2a = 64
4(8.33) + 2a = 64
33.32 + 2a = 64
-33.32 -33.32
2a = 30.68
/2 /2
a = 15.34 (the cost of each adult ticket)
(x, y) ==> (8.33, 15.34)
Check your answer:
4s + 2a = 64
4(8.33) + 2(15.34) = 64
33.32 + 30.68 = 64
64 = 64
This statement is true
Hope this helps!
Answer:
126.
Step-by-step explanation:
This is the number of combinations of 4 cards from 9 cards:
= 9C4
= 9! / 4! 5!.
A quick way of calculating this is
9*8*7*6
----------- = 9*2*7 = 126 combinations.
4*3*2*1
The surface area formula is 4 x pi x r^2
Answer:
3.58
Step-by-step explanation:
You must add up all of the numbers which will get you 17.9
Then divide 17.9 by the total amount of numbers (5) = 3.58