According to Osmotic pressure equation:
π = i M R T
When π =0.307 atm & M = 0.01 mol & R (constant)= 0.0821 L-atom/mol-K &
T= 22+273 = 295 Kelvin
So Van't half vector i = π / (MRT)
= 0.307 / (0.01 * 0.0821 * 295)
= 1.27
When there is no dissociation, i = no. of moles of Hf in 1 L of solution = (1-X)
and when there is a complete dissociation so it is equal 2X according to this equation
HF(aq) + H2O (L) ⇆ H3O (aq) + F (aq)
(1-X) X X
∴ i = (1-X) + (2x)
1.27 = 1+X
∴X= 1.27 - 1 = 0.27
∴ the percent ionization of the acid X = 27 %
Make a ball of clay and embed small beads throughout it. The plum pudding model.
Answer:
a. 7.52
b. 16.5
c. 85
d. 6.03
Explanation:
significant number exempts 0 as a number which explains the last one. The two significant numbers there are 6 and 3
This is a law because it describes the force but makes not attempt to explain how the force works. A theory is an explanation of a natural phenomenon. Einstein's General Theory of Relativity explains how gravity works by describing gravity as the effect of curvature of four dimensional spacetime.
Answer:
C.) HOCl Ka=3.5x10^-8
Explanation:
In order to a construct a buffer of pH= 7.0 we need to find the pKa values of all the acids given below
we Know that
pKa= -log(Ka)
therefore
A) pKa of HClO2 = -log(1.2 x 10^-2)
=1.9208
B) similarly PKa of HF= -log(7.2 x 1 0^-4)= 2.7644
C) pKa of HOCl= -log(3.5 x 1 0^-8)= 7.45
D) pKa of HCN = -log(4 x 1 0^-10)= 9.3979
If we consider the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution
The weak acid for making the buffer must have a pKa value near to the desired pH of the weak acid.
So, near to value, pH=7.0. , the only option is HOCl whose pKa value is 7.45.
Hence, HOCl will be chosen for buffer construction.