Answer:
The correct answer is B.
Explanation:
The molecule of water has 2 atoms of hydrogen and 1 atom of oxygen.
The ratio of masses are given as:

This illustrates the law of definite proportions which is also known as law of constant compositions .
The law states that 'the elements combining to form compound always combine in a fixed ratio by their mass.'
Whereas :
Law of multiple proportion states that when two elements combine with each other to form more than one compounds , the mass of one element with respect to the fixed mass of another element are in ratio of small whole numbers.
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
In a balanced chemical reaction ,total mass on the reactant side must be equal to the total mass on the product side.
Law of conservation of energy states that energy can neither be created nor be destroyed but it can only be transformed from one form to another form.
Answer:
2 mole of Sodium hydroxide reacts with 1 mole of Sulfuric acid
Explanation:
Write down the equation in the beginning with reactants and products:
NaOH + H₂SO₄ → Na₂SO₄ + H₂0
Now try to balance it. Try with Na first:
2NaOH + H₂SO₄ → Na₂SO₄ + H₂0
Na atoms are balanced. There are 6 Oxygen atoms on the right and 5 on the left. Balance by increasing the H₂O moles:
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂0
Check if H atoms are also balanced. They are. That means our final reaction is:
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂0
2 Moles of NaOH reacts with 1 mole of H₂SO₄
The answer would be ethane (C2H4)
Answer:
The answer to your question is letter B. 9
Explanation:
Unbalanced reaction
Al₂(SO₄)₃ + Ca(OH)₂ ⇒ Al(OH)₃ + CaSO₄
Reactants Elements Products
2 Al 1
3 S 1
14 O 7
1 Ca 1
2 H 3
Balanced reaction
Al₂(SO₄)₃ + 3Ca(OH)₂ ⇒ 2Al(OH)₃ + 3CaSO₄
Reactants Elements Products
2 Al 2
3 S 3
18 O 18
3 Ca 3
6 H 6
The sum of the coefficients is 1 + 3+ 2+ 3 = 9
Explanation:
The more reactive element replaces less reactive element during chemical reaction.
Since, potassium is more reactive than beryllium. When potassium reacts with beryllium choride, it replaces beryllium and forms potassium chloride and produces beryllium.