You can use the mass of neuron divided by the mass of conversion factor: 1.67*10^(-25)/(1.66054*10^(-24))≈1 amu. So the answer is 1 amu.
Answer:C The final product cannot be converted back to the original ingredients.
The forces between particles are called intermolecular forces. A strong intermolecular force means that the particles are tightly paced and is associated with the solid phase. Moderate intermolecular force is associated with the liquid state and little to no intermolecular force is associated with the gaseous state. Temperature has a direct effect on the state of matter in which the substance exists has. Generally speaking, a rise in tempreature changes a substance from the solid to liquid phase and from liquid to gaseus phase. The reverse is true, if the temperature lowers then the substance will go from gas to liquid and liquid to solid. It is important to not that temperature affects intermolecular forces. As the temperature increases then the individual particles become excited and gain enough energy to over the intermolecular forces and so the particles seperate from each other.
Answer:
The number of moles of nitrogen in the tank are 1,98.
Explanation:
We apply the ideal gas law, convert the temperature unit in Celsius to degrees Kelvin, solve for n (number of moles). The gas constant R is used with a value of 0.082 l atm / K mol:
0°C= 273 K ---> 19, 71°C= 273 + 19,71= 292, 71K
PV= nRT ---> n=PV/RT
n= 4,97 atm x 9,583 L/ 0.082 l atm / K mol x 292, 71K=<em> 1, 98 mol</em>
hey there!:
A) Knowing theatre the protease is showing the highest activity at pH 4-6, implies that the amino acid that amino acid that it is acting in is an amino acid with a basic side chain. Therefore, the residues can be any one of the three basic amino acids being histidine, arginine or lysine , having basic side chains at neutral pH.
b) The mechanism of reaction of cysteine proteases is as follows:
First step in the reaction is the deprotonation of a thiol in the cysteine proteases's active site by an adjacent amino acid with a basic side chain, which might be a histidine residue. This is followed by a nucleophilic attack by the anionic sulfur of the deprotonated cysteine on the substrate carbonyl carbon.
Here, a part of the substrate is released with an amine terminus, restoring the His into a deprotonated form, thus forming a thioester intermediate, forming a link between the carboxy-terminal of the substrate and cysteine, resulting in thiol formation. Thus the name thiol proteases. The thioester bond is then hydrolyzed into a carboxylic acid moiety while again forming the free enzyme.
C) cysteine proteases have a pka of 8-9 but when they are deprotonated by a His residue, their pka would come down to 6-8, which would be their optimal pH for functioning. This is because there is a deprotonation of the thiol group , later restoring the HIS deprotonated form and then formation of a thioester bond. This thioester bond when hydrolysed will a carboxylate moeity , which is responsible for bringing the pH down towards a more acidic side.
d) at the optimal pH , the fraction of deprotonated cysteine and protonated B will be equal which will change with the change in pH.
Hope this helps!