1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
3241004551 [841]
2 years ago
7

Based on your observations in the lab, what do you think happens to the majority of water (not, ice) at the poles? at the equato

r?
Chemistry
1 answer:
ahrayia [7]2 years ago
5 0
I think the best way to  explain it is that the water at the poles and in the equators is that temperature of the water at the poles are mostly low because of the insufficient heat energy and the water in the poles has a higher temperature compare to the water in the poles.
You might be interested in
(2 KClO3 (s) → 2 KCl (s) + 3 O2 (g) ) If 165 mL of oxygen is produced at 30.0 °C and 90.0 kPa, what mass of KClO3 was decomposed
soldier1979 [14.2K]

Taking into account the reaction stoichiometry and ideal gas law, 0.48144 grams of KClO₃ was decomposed.

<h3>Reaction stoichiometry</h3>

In first place, the balanced reaction is:

2 KClO₃  → 2 KCl + 3 O₂

By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:

  • KClO₃: 2 moles  
  • KCl: 2 moles
  • O₂: 3 moles

The molar mass of the compounds is:

  • KClO₃: 122.45 g/mole
  • KCl: 74.45 g/mole
  • O₂: 32 g/mole

Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:

  • KClO₃: 2 moles ×122.45 g/mole= 244.8 grams
  • KCl: 2 moles ×74.45 g/mole= 148.9 grams
  • O₂: 3 moles ×32 g/mole= 96 grams

<h3>Ideal gas law</h3>

The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:

P×V = n×R×T

where:

  • P is the gas pressure.
  • V is the volume that the gas occupies.
  • T is the temperature of the gas.
  • R is the ideal gas constant. The universal constant of ideal gases R has the same value for all gaseous substances.
  • n is the number of moles of the gas.

<h3>Number of O₂ produced.</h3>

165 mL of oxygen is produced at 30.0 °C and 90.0 kPa. This is, you know:

  • P= 90 kPa= 0.888231 atm (being 101.325 kPa= 1 atm)
  • V= 165 mL= 0.165 L (being 1000 mL= 1 L)
  • n= ?
  • R= 0.082 \frac{atmL}{molK}
  • T= 30 C= 303 K (being 0 C= 273 K)

Replacing in the ideal gas law:

0.888231 atm× 0.165 L = n× 0.082 \frac{atmL}{molK}× 303 K

Solving:

n= (0.888231 atm× 0.165 L)÷ (0.082 \frac{atmL}{molK}× 303 K)

<u><em>n= 0.0059 moles</em></u>

Finally, 0.0059 moles of oxygen is produced at 30 °C and 90 kPa.

<h3>Mass of KClO₃ required</h3>

The following rule of three can be applied: If by stoichiometry of the reaction 3 moles of O₂ are produced by 244.8 grams of KClO₃, 0.0059 moles of O₂ are produced by how much mass of KClO₃?

mass of KClO_{3}= \frac{0.0059 moles of O_{2}x 244.8 grams of KClO_{3}}{3 moles of O_{2}}

<u><em>mass of KClO₃= 0.48144 grams</em></u>

Finally, 0.48144 grams of KClO₃ was decomposed.

Learn more about

the reaction stoichiometry:

<u>brainly.com/question/24741074</u>

<u>brainly.com/question/24653699</u>

ideal gas law:

<u>brainly.com/question/4147359?referrer=searchResults</u>

4 0
2 years ago
First answer will be brainliest!!
igomit [66]
I think it is rarefaction. But im not sure

8 0
2 years ago
Given these reactions, X ( s ) + 1 2 O 2 ( g ) ⟶ XO ( s ) Δ H = − 668.5 k J / m o l XCO 3 ( s ) ⟶ XO ( s ) + CO 2 ( g ) Δ H = +
qwelly [4]

<u>Answer:</u> The \Delta H^o_{rxn} for the reaction is -1052.8 kJ.

<u>Explanation:</u>

Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.

According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.

The given chemical reaction follows:

X(s)+\frac{1}{2}O_2(g)+CO_2(g)\rightarrow XCO_3(s)      \Delta H^o_{rxn}=?

The intermediate balanced chemical reaction are:

(1) X(s)+\frac{1}{2}O_2(g)\rightarrow XO(s)    \Delta H_1=-668.5kJ

(2) XCO_3(s)\rightarrow XO(s)+CO_2     \Delta H_2=+384.3kJ

The expression for enthalpy of the reaction follows:

\Delta H^o_{rxn}=[1\times \Delta H_1]+[1\times (-\Delta H_2)]

Putting values in above equation, we get:

\Delta H^o_{rxn}=[(1\times (-668.5))+(1\times (-384.3))=-1052.8kJ

Hence, the \Delta H^o_{rxn} for the reaction is -1052.8 kJ.

7 0
3 years ago
I have no idea how to do this, any help would be appreciated
aksik [14]
Proton number = the atomic number (which is the smaller number
neutron number = the mass number (the bigger number) - the atomic number
number of electrons = the atomic number - the charge (it depends on the element but group 1 is +1 group 2 is +2 group 3 is +3 group five is -3 group six is -2 group seven is -1


i would solve the whole thing but its unclear hope this helps tho
6 0
2 years ago
Which type of molecule is shown below?
zubka84 [21]

Answer:

\boxed{\mathrm{Alkene}}

Explanation:

The hydrocarbon shown has a double bond. Hydrocarbons with double bonds are known as alkenes.

Cyclic alkanes have cyclic structure.

Alkanes only have single bonds.

Alkynes have triple bonds.

8 0
3 years ago
Read 2 more answers
Other questions:
  • Into which molecule are all the carbon atoms in glucose ultimately incorporated during cellular respiration?
    15·1 answer
  • What do carbon 12 carbon 13 and carbon 14 have in common?
    7·1 answer
  • A new potential heart medicine, code-named X-281, is being tested by a pharmaceutical company, Pharma-pill. As a research techni
    5·1 answer
  • Which class of organic compounds has molecules that contain nitrogen atoms?
    6·1 answer
  • Consider the three ligand field spectra corresponding to octahedral complexes A, B, and C, all formed from the same metal ion.
    15·1 answer
  • What are valence electrons?
    6·1 answer
  • A sample of calcium oxide (CaO) has a mass of 2.80 g. The molar mass of CaO is 56.08 g/mol. How many moles of CaO does this samp
    11·2 answers
  • Someone took the last cookie from the cookie jar last night. The last person to leave the scene is the culprit. Who was it? High
    12·1 answer
  • If half of the
    7·1 answer
  • 1 (
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!