Answer:
We are given:
Volume (V) = 0.25 L
Pressure (P) = 0.93 atm
Temperature (T) = 15.4°C OR 288.4 K
<u>Solving for the number of moles of CO₂:</u>
From the ideal gas equation:
PV = nRT
replacing the variables
0.93 * 0.25 = n (0.082)(288.4)
n = 0.00983 moles
<u>Number of molecules:</u>
Number of moles= 0.00983
number of molecules in 1 mole = 6.022 * 10²³
Number of molecules in 0.00983 moles = 0.00983 * 6.022 * 10²³
Number of molecules = 5.91 * 10²¹
Answer:
Electromagnetic Wave Medium Matter:The ability to move or change an object, or what a wave
Longitudinal Wave Trough Rarefaction: The area in a longitudinal wave where the particles are close together.
Transverse Wave Energy Wavelength: The highest point of a transverse wave
Explanation:
give me brainliest
Answer:
A. The average of all the data points
Thermodynamics, Nuclear Physics, Quantum Physics, Astronomy and Astrophysics
Vs = 1.0 mL = 0.001 L
c((NH4)2CO3) = <span>0.02 M
n(</span>(NH4)2CO3) = ?
For the purpose, here we will use the next equation:
c=n/V ⇒ n=cxV
n((NH4)2CO3) = 0.02M x 0.001L
n((NH4)2CO3) = 2x10⁻⁵ mole of (NH4)2CO3 is presented in the solution