<u>Given: </u>
Radius of culvert, r = 0.5 m
Tangential acceleration of the truck, a = 3 m/s2
<u>To determine:</u>
The angular acceleration, α
<u>Explanation:</u>
The tangential acceleration is related to the angular acceleration through the radius as:
a = rα
α = a/r = 3 ms⁻²/0.5 m = 6 s⁻²
Ans: The angular acceleration is 6 s⁻²
Answer:
30.62 L
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 55 L
Initial pressure (P₁) = 3.2 atm
Initial temperature (T₁) = 520 K
Final temperature (T₂) = 760 K
Final pressure (P₂) = 8.4 atm
Final volume (V₂) =?
The final volume of the gas can be obtained as follow:
P₁V₁ / T₁ = P₂V₂ / T₂
3.2 × 55 / 520 = 8.4 × V₂ / 760
176 / 520 = 8.4 × V₂ / 760
Cross multiply
520 × 8.4 × V₂ = 176 × 760
4368 × V₂ = 133760
Divide both side by 4368
V₂ = 133760 / 4368
V₂ = 30.62 L
Therefore, the new volume of the gas is 30.62 L
Ionic compounds are formed between oppositely charged ions.
A binary ionic compound is composed of ions of two different elements - one of which is a positive ion(metal), and the other is negative ion (nonmetal).
To write the empirical formula of binary ionic compound we must remember that one ion should be positive and other ion should be negative, then only the correct formula should be written. To write the empirical formula the charges of opposite ions should be criss-crossed.
First empirical formula of binary ionic compound is written between
First Formula would be 
Second empirical formula is between 
Second Formula would be 
Note : When the subscript are same they get cancel out, so
would be written as 
Third empirical formula is between 
Third Formula would be :
Forth empirical formula is between 
Forth Formula would be :
or 
Note- The subscript will be simplified and the formula will be written as
.
The empirical formula of four binary ionic compounds are : 
Answer:
The resulting solution is basic.
Explanation:
The reaction that takes place is:
First we <u>calculate the added moles of HNO₃ and KOH</u>:
- HNO₃ ⇒ 12.5 mL * 0.280 M = 3.5 mmol HNO₃
- KOH ⇒ 5.0 mL * 0.920 M = 4.6 mmol KOH
As <em>there are more KOH moles than HNO₃,</em> the resulting solution is basic.