<h3>Answer:</h3>
162.43 g of FeCl₂
<h3>
Explanation:</h3>
Step 1: Calculate mass of Fe;
As,
Density = Mass ÷ Volume
Or,
Mass = Density × Volume
Where Volume is the volume of water displaced = 10.4 mL
Putting values,
Mass = 7.86 g.mL⁻¹ × 10.4 mL
Mass = 81.744 g of Fe
Step 2: Calculate amount of FeCl₂;
The balance chemical equation is as follow,
Fe + 2 HCl → FeCl₂ + H₂ ↑
According to this equation,
55.85 g (1 mol) Fe produced = 110.98 g (1 mol) of FeCl₂
So,
81.744 g Fe will produce = X g of FeCl₂
Solving for X,
X = (81.744 g × 110.98 g) ÷ 55.85 g
X = 162.43 g of FeCl₂
Explanation:
Scientifically speaking, metals are naturally occurring chemical elements that are typically hard, lustrous, and good conductors of both heat and electricity. Examples include iron, gold, silver, copper, zinc, nickel, etc., but also elements we don't normally think of as metals.
The density is 3 because the density remains the same.
Addition of water to an alkyne gives a keto‑enol tautomer product and that is the product changed into 2-pentanone, then the alkyne need to had been 1-pentyne. 2-pentyne might have given a combination of 2- and 3-pentanone.
<h3>
What is the keto-enol means in tautomer?</h3>
They carries a carbonyl bond even as enol implies the presence of a double bond and a hydroxyl group. The keto-enol tautomerization equilibrium is depending on stabilization elements of each the keto tautomer and the enol tautomer.
- The enol that could provide 2-pentanone might had been pent-1- en - 2 -ol. Because an equilibrium favors the ketone so greatly, equilibrium isn't an excellent description.
- If the ketone have been handled with bromine, little response might be visible because the enol content material might be too low.
- If a catalyst have been delivered, NaOH for example, then formation of the enolate of pent-1-en - 2 - ol might shape and react with bromine.
- This might finally provide a bromoform product. Under acidic conditions, the enol might desire formation of the greater substituted enol constant with alkene stability.
Answer: Getting into the technicalities, the continental crust has a density of around 3.0 g/cm3 compared to 2.6 g/cm3 of the continental crust. In addition, the continental crust is much thicker than the oceanic crust.
Explanation:
Hope this helps! Mark me Brainliest pls :)