Molar mass :
Cl₂ = 71.0 g/mol Na = 23.0 g/mol
<span>2 Na + Cl</span>₂<span> = 2 NaCl
</span>
2 x 23 g Na -------> 71.0 g Cl₂
96.6 g Na ----------> ?
Mass Cl₂ = ( 96.6 x 71.0 ) / ( 2 x 23 )
Mass Cl₂ = 6858.6 / 46
= 149.1 g of Cl₂
hope this helps!
Answer:
potassium contains both Ionic and covalent bonds
Answer:
See Explanation
Explanation:
The equation of the reaction;
KHSO4(aq) + KOH(aq) -------> K2SO4(aq) + H2O(l)
Number of moles of KHSO4 = 49.6 g/136.169 g/mol = 0.36 moles
Since the reaction is in a mole ratio of 1:1, 0.36 moles of K2SO4 is produced.
Number of moles of KOH = 25.3 g/56.1056 g/mol = 0.45 moles
Since the reaction is 1:1, 0.45 moles of K2SO4 is produced
Hence K2SO4 is the limiting reactant.
Mass of K2SO4 formed = 0.36 moles of K2SO4 * 174.26 g/mol = 62.7 g
So;
1 mole of KHSO4 reacts with 1 mole of KOH
0.36 moles of KHSO4 reacts with 0.36 * 1/1 = 0.36 moles of KOH
Amount of excess KOH = 0.45 moles - 0.36 moles = 0.09 moles
Mass of excess KOH = 0.09 moles * 56.1056 g/mol = 5 g of excess KOH
The correct answer is industrial smog. This type of smog exists in coal power plants which creates smoke and sulfur dioxide which may mix with fog creating a thick blanket of haze. Sulfur dioxide is one primary component of an industrial smog.